首页> 外文期刊>Journal of Thermal Science and Engineering Applications: Transactions of the ASME >Role of Heating Location on the Performance of a Natural Convection Driven Melting Process Inside a Square-Shaped Thermal Energy Storage System
【24h】

Role of Heating Location on the Performance of a Natural Convection Driven Melting Process Inside a Square-Shaped Thermal Energy Storage System

机译:加热位置对方形热能存储系统内自然对流驱动熔化过程的性能的作用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, numerical experiments were performed to compare the heat transfer and thermodynamic performance of melting process inside the square-shaped thermal energy storage system with three different heating configurations: an isothermal heating from left side-wall or bottom-wall or top-wall and with three adiabatic walls. The hot wall is maintained at a temperature higher than the melting temperature of the phase change material (PCM), while all other walls are perfectly insulated. The transient numerical simulations were performed for melting Gallium (a low Prandtl number Pr = 0.0216, low Stefan number, Ste = 0.014, PCM with high latent heat to density ratio) at moderate Rayleigh number (Ra (sic) 10(5)). The transient numerical simulations consist of solving coupled continuity, momentum, and energy equation in the unstructured formulation using the PISO algorithm. In this work, the fixed grid, a source-based enthalpy-porosity approach has been adopted. The heat transfer performance of the melting process was analyzed by studying the time evolution of global fluid fraction, Nusselt number at the hot wall, and volume-averaged normalized flow-kinetic-energy. The thermodynamic performance was analyzed by calculating the local volumetric entropy generation rates and absolute entropy generation considering both irreversibilities due to the finite temperature gradient and viscous dissipation. The bottom-heating configuration yielded the maximum Nusselt number but has a slightly higher total change in entropy generation compared to other heating configurations.
机译:在这项工作中,进行数值实验,以比较熔化过程的传热和热力学性能,具有三种不同的加热配置:从左侧壁或底壁或顶壁的等温加热和三个绝热墙。热壁保持在高于相变材料(PCM)的熔化温度的温度,而所有其他墙壁都是完全绝缘的。在适度的瑞利数(RA(SiC)10(5))下,对熔融镓进行熔融镓(低Prandtl号Pr = 0.0216,低梯度,具有高潜热至密度比的PCM)。瞬态数值模拟包括使用PISO算法在非结构化配方中解决耦合连续性,动量和能量方程。在这项工作中,已经采用了固定网格,一种基于源的焓 - 孔隙度方法。通过研究热壁的全球流体馏分,露珠数的时间演变,分析熔融过程的传热性能,以及体积平均归一化的流动动能 - 能量。通过计算局部容量熵产生速率和绝对熵产生,通过有限温度梯度和粘性耗散计算局部容量熵产生速率和绝对熵生成来分析热力学性能。与其他加热配置相比,底部加热配置产生了最大的营养数,但熵产生略高的总变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号