For the promotion of li'/> Toward Highly Efficient Electrocatalyst for Li–O<sub>2</sub> Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures
首页> 外文期刊>JPC Bulletin on Iron & Steel >Toward Highly Efficient Electrocatalyst for Li–O2 Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures
【24h】

Toward Highly Efficient Electrocatalyst for Li–O2 Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures

机译:使用双相型N-掺杂钴@ Graphene多胶囊异质结构对Li-O 2 电池的高效电催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/nalefd/2017/nalefd.2017.17.issue-5/acs.nanolett.7b00207/20170504/images/medium/nl-2017-00207k_0005.gif">For the promotion of lithium–oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium–oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/nefd/2017/nalefd.2017.17.issue-5/acs.nanolett.7b00207/20170504/images/medium /nl-2017-00207K_0005.gif"CY“促销锂氧电池可用于实际应用,要求高原,高活性和稳定结构性能的先进阴极催化剂的开发。这种发展源于某些智能催化剂 - 电极设计,从而促进了电子和离子运输,并提高了多孔环境中的氧扩散率。在这里,我们设计了双相氮掺杂的钴@ Graphene多胶囊异质结构,与柔性,稳定的多孔电极架构合并,并将其作为锂 - 氧电池的承诺阴极施加。双相氮掺杂特征改善了电导率和催化活性;多纳米胶囊构造使得高/均匀的电活性区可能;此外,烧耳状多孔电极有利于氧扩散,催化反应和排出产品的稳定沉积。结果,电极表现出与电化学生长锂过氧化物的独特形态相关的大量改善的电催化性质。

著录项

  • 来源
    《JPC Bulletin on Iron & Steel》 |2017年第5期|共8页
  • 作者单位

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Center for Nanoscale Materials Argonne National Laboratory Argonne Illinois 60439 United States;

    Department of Chemical Engineering and Department of Mechanical and Industrial Engineering The University of Illinois at Chicago Chicago Illinois 60607 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Department of Chemical Engineering and Department of Mechanical and Industrial Engineering The University of Illinois at Chicago Chicago Illinois 60607 United States;

    Department of Chemical Engineering and Department of Mechanical and Industrial Engineering The University of Illinois at Chicago Chicago Illinois 60607 United States;

    Center for Nanoscale Materials Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

    Chemical Sciences and Engineering Division and Materials Science Division Argonne National Laboratory Argonne Illinois 60439 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 钢铁冶炼(黑色金属冶炼)(总论);
  • 关键词

    cathode catalyst; cobalt nitride; lithium?oxygen battery; MOF; N-doped graphene;

    机译:阴极催化剂;钴氮化物;锂氧化物电池;MOF;N掺杂石墨烯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号