首页> 外文期刊>Journal of tissue engineering and regenerative medicine >Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression
【24h】

Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression

机译:用于工程骨旋转生物组织的仿生胎儿旋转生物反应器 - 循环菌株对成骨基因表达上调的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-beta-tricalcium phosphate scaffolds were cultured in this bioreactor over 2weeks in 4 different modesstatic, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 alpha 1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation.
机译:细胞响应于早期胎儿发育期间的生理机械应力。采用仿生方法,有必要开发生物反应器系统,以探索生理相关的机械菌株和剪切应力对功能组织生长和发育的影响。该研究介绍了一种多模式生物反应器系统,允许在骨组织工程培养下培养的过早骨移植物上的循环压缩菌株在骨组织工程的条件下培养。生物反应器与用于溶解氧水平的传感器和允许实时,对培养参数的非侵入性监测的传感器集成。间充质干细胞 - 种子聚己内酯 - β-三丙酸钙支架在该生物反应器中培养在4周的4种不同的型循环压缩,双轴旋转和多峰(循环压缩和双轴旋转)中。与第一周内的静态控制相比,多峰培养导致1.8倍的细胞增殖。在多模式生物反应器中的两周培养利用最佳流体流动条件和循环压缩的组合效应导致成骨磷酸酶(3.2倍),骨胶(2.4倍),骨钙素(10倍)的骨质磷酸酶(3.2倍)的上调。与静态培养物相比,胶原蛋白1型α1(2倍)。我们首次报告,使用具有非侵入性传感方式的生物反应器平台来报告机械刺激和机械刺激和双轴旋转的骨组织工程。所证明的结果表明,使用生理相关的生物反应器系统来倾向于使用生理相关的生物反应器来产生临床植入的自体骨移植物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号