...
首页> 外文期刊>Journal of Theoretical Biology >Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts
【24h】

Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts

机译:控制叶绿体内包膜膜中加乳脂生物合成的调节循环的建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In Angiosperms, the biosynthesis of galactolipids involves enzymes localized in the inner envelope membrane (IEM) of chloroplasts, including a phosphatidic acid phosphatase (PAP), dephosphorylating phosphatidic acid (PA) into diacylglycerol (DAG), and MGD1, transferring a galactose onto DAG thus generating monogalactosyldiacylglycerol (MGDG). It has been shown that PA and DAG could be synthesized in the plastid via the so-called 'prokaryotic' pathway or imported from the endoplasmic reticulum via the 'eukaryotic' pathway. In vitro studies support the existence of (1) a negative regulation of the plastid PAP by DAG and (2) an activation of MGD1 by PA. We developed a mathematical model of the IEM galactolipid biosynthesis pathway to understand the properties of the system ruled by the presence of these two regulatory motifs. We demonstrated that the design of the system implies that PA should accumulate to levels that are not observed experimentally, regardless of its prokaryotic or eukaryotic origin. PA should therefore be used for other syntheses, such as that of phosphatidylglycerol. Whereas a massive influx of eukaryotic PA appears unlikely, an influx of eukaryotic DAG in the IEM is supported by simulations. The model also implies that DAG cannot transiently accumulate and that PA mainly acts as a signal switching the whole system on. Eventually, this analysis highlights the fact that the PAP enzyme could easily become dispensable and that the design of the system, with the two regulatory motifs, could precede the loss of the PAP gene or activity in this pathway, a phenomenon that occurred independently in most clades of Angiosperms. (C) 2014 Elsevier Ltd. All rights reserved.
机译:在高血管植物中,半乳糖的生物合成涉及局部封装在叶绿体的内包膜膜(IEM)中的酶,包括磷脂酸磷酸酶(PAP),去磷酸化磷脂酸(PA)进入二酰基甘油(DAG)和MGD1,将半乳糖转移到DAG上从而产生单酰氯酰基二酰基甘油(MgDG)。已经证明,PA和DAG可以通过所谓的“原核”途径在体积中合成,或通过“真核”途径从内质网进口。体外研究支持(1)通过DAG和(2)通过PA的MgD1的活化的负调节。我们开发了IEM Galactolipid生物合成途径的数学模型,以了解通过这两个调节基序的存在统治的系统的性质。我们证明了系统的设计意味着PA应积累到实验性未观察到的水平,无论其原核或真核生物原产如何。因此,PA应用于其他合成,例如磷脂酰甘油的其他合成。鉴于大量的真核PA涌入不太可能,而IEM中的真核表达涌入是通过模拟支持的。该模型还意味着DAG不能瞬间累积,并且PA主要用作切换整个系统的信号。最终,这种分析突出了PAM酶可以很容易地分配的事实,并且系统的设计与两个调节基序,可以在本途径中的PAP基因或活性的损失之前,这是最独立的现象有道血植物的片状。 (c)2014年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号