首页> 外文期刊>Journal of the European Ceramic Society >Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure
【24h】

Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure

机译:熔融硅酸盐与等离子喷涂的热屏蔽涂层:材料的作用和微观结构

获取原文
获取原文并翻译 | 示例
       

摘要

Ingestion of siliceous particulate debris into both propulsion and energy turbines has introduced significant challenges in harnessing the benefits of enhanced operation efficiencies through the use of higher temperatures and thermal barrier coatings (TBCs). The so-called CMAS (for calcium-magnesium alumino-silicate) particles can melt in the gas path at temperatures greater than 1200C, where they will subsequently impact the coating surface and infiltrate through the carefully engineered porosity or cracks in a TBC. Ultimately, this CMAS attack causes premature spallation through its solidification and stiffening the ceramic during cooling. It has been noted in recent years, that TBCs based on yttria stabilized zirconia (YSZ) are completely non-resistant to CMAS attack due to their lack of reactivity with infiltrant liquid. New TBC ceramics such as Gadolinium Zirconate (GZO) show promise of CMAS resistance through rapid reaction-induced crystallization and solidification of the infiltrant, leading to its arrested infiltration. In both situations, the microstructure (porosity, micro and macro cracks) can be important differentiators in terms of the infiltration and subsequent failure mechanisms. This paper seeks to examine the interplay among microstructure, material, and CMAS attack in different scenarios. To do so, different types of YSZ & GZO single and multilayer coatings were fabricated using Air Plasma Spray (APS) and exposed to CMAS through isothermal and gradient mechanisms. In each of the cases, beyond their unique interactions with CMAS, it was observed the inherent microstructure and character of the porosity of the coating will have an additional role on the movement of the melt. For instance, vertical cracks can provide pathways for accelerated capillaric flow of the melt into both YSZ and GZO coatings. Based on these observations multilayer coatings have been proposed and realized toward potentially reducing complete coating failure and supporting multiple CMAS attack scenarios.
机译:在推进和能量涡轮机中摄取硅质颗粒状碎片在通过使用更高的温度和热障涂层(TBC)利用增强的操作效率的益处引入了显着的挑战。所谓的CMA(对于铝硅酸钙)颗粒可以在大于120℃的温度下熔化在气体路径中,在那里它们随后将涂层表面冲击涂层表面并通过TBC中的仔细工程化孔隙率或裂缝渗透。最终,这种CMAS攻击通过其在冷却过程中通过其凝固和加强陶瓷而过早剥落。近年来已经注意到,由于它们缺乏与渗透液体的反应性,基于氧化钇稳定的氧化锆(YSZ)的TBCs对CMAS发作完全不耐用。新的TBC陶瓷如钆锆(GZO)通过快速反应诱导的结晶和渗透凝固来显示CMAs抗性的承诺,导致其被捕的渗透。在这种情况下,就渗透和随后的故障机制而言,微观结构(孔隙度,微观和宏观裂缝)可以是重要的差异。本文探讨了在不同场景中的微观结构,材料和CMAS攻击之间的相互作用。为此,使用空气等离子体喷雾(AP)制造不同类型的YSZ和GZO单和多层涂层,并通过等温和梯度机制暴露于CMAS。在每个病例中,除了与CMAS的独特相互作用之外,观察到涂层的孔隙率的固有组织和性质将在熔体的运动方面具有额外的作用。例如,垂直裂缝可以提供用于将熔体的加速毛细管流入YSZ和GZO涂层的途径。基于这些观察结果,已经提出了多层涂层,并实现了潜在地减少完整的涂层失效并支持多个CMA攻击情景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号