首页> 外文期刊>Journal of Plasma Physics >Heating of accretion-disk coronae and jets by general relativistic magnetohydrodynamic turbulence
【24h】

Heating of accretion-disk coronae and jets by general relativistic magnetohydrodynamic turbulence

机译:通用相对论磁力流体动力学湍流加热Accretion-Disco-Coronae和喷气机

获取原文
获取原文并翻译 | 示例
           

摘要

Turbulence in an accretion disk launches Alfven waves (AWs) that propagate away from the disk along magnetic-field lines. Because the Alfven speed varies with distance from the disk, the AWs undergo partial non-WKB reflection, and counter-propagating AWs subsequently interact, causing AW energy to cascade to small scales and dissipate. To investigate this process, we introduce an Elsasser-like formulation of general relativistic magnetohydrodynamics (GRMHD) and develop the theory of general relativistic reduced MHD in an inhomogeneous medium. We then derive a set of equations for the mean-square AW amplitude M+ and turbulent heating rate Q under the assumption that, in the plasma rest frame, AWs propagating away from the disk are much more energetic than AWs propagating toward the disk. For the case in which the background flow is axisymmetric and time independent, we solve these equations analytically to determine M+ and Q as functions of position. We find that, for an idealized thin disk threaded by a large-scale poloidal magnetic field, the AW energy flux is similar to (rho(b)/rho(d))(1/2)beta(net),(d) (-1/2) times the disk's radiative flux, where rho(b) and rho(d) are the mass densities at the coronal base and disk midplane, respectively, and beta(net,d) is the ratio (evaluated at the disk midplane) of plasma-plus-radiation pressure to the pressure of the average vertical magnetic field. This energy flux could have a significant impact on disk coronae and outflows. To lay the groundwork for future global simulations of turbulent disk coronae and jets, we derive a set of averaged GRMHD equations that account for reflection-driven AW turbulence using a sub-grid model.
机译:磁盘中的湍流发射了沿磁场线远离磁盘传播的Alfven波(AWS)。因为ALFven速度随磁盘的距离而变化,所以AWS经历部分非WKB反射,并反向传播AWS随后交互,导致AW能量级联到小尺度并消散。为了研究这一过程,我们介绍了一般相对论磁力学(GRMHD)的ELSASSER样制剂,并在不均匀培养基中发展了一般相对论减少的MHD的理论。然后,我们在假设中导出了一组用于平均方AW幅度M +和湍流加热速率Q的方程,即在等离子体休息框架中,远离磁盘传播的AWS比朝向磁盘传播的AWS更精力。对于轴对称和时间独立的情况,我们在分析地解决这些方程以确定M +和Q作为位置的函数。我们发现,对于由大规模的磁场螺纹穿线的理想化细磁盘,AW能量通量类似于(rho(b)/ rho(d))(1/2)β(net),(d) (-1/2)盘的辐射通量,其中rho(b)和rho(d)是冠状碱和圆盘中间板的质量密度,并且β(net,d)是该比率(在磁盘中间板)等离子体加辐射压力与平均垂直磁场的压力。这种能量通量可能对磁盘coronae和流出产生重大影响。为了为未来的湍流盘Coronae和喷气机的全球模拟奠定基础,我们推导了一组平均的GRMHD方程,其考虑了使用子网格模型的反射驱动的励磁湍流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号