...
首页> 外文期刊>Journal of Petroleum Science & Engineering >A numerical simulation study on the characteristics of the gas production profile and its formation mechanisms for different dip angles in coal reservoirs
【24h】

A numerical simulation study on the characteristics of the gas production profile and its formation mechanisms for different dip angles in coal reservoirs

机译:煤储层中不同倾角的气体生产轮廓特性及其地层机理的数值模拟研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The dip angles of coal reservoirs in China vary greatly, among which the southern margin of the Junggar Basin is generally greater than 50 degrees, rendering it a steeply inclined reservoir (SIR). Within a single well's radius of influence, the different effects of gravity on the up-dip reservoir (UDR) and down-dip reservoir (DDR) of a coalbed methane (CBM) well result from tilting. A large difference exists in reservoir pressure, gas content and permeability levels due to the depth of the UDR and DDR. These differences control the characteristics of the gas production profile (GPP) of SIR wells. In order to study the GPP of CBM wells under different coal reservoir dip angles, ECLIPSE numerical simulation software was used to simulate well production at dip angles of 0 degrees/10 degrees/20 degrees/30 degrees/40 degrees/50 degrees/60 degrees/70 degrees/80 degrees. GPP of the wells in reservoirs with different dip angles in UDR and DDR were compared. The formation mechanism of the GPP was explored by analysing the water saturation, reservoir pressure and gas content characteristics of UDR and DDR. The field case was used to verify the accuracy of the numerical simulation results. From the results of the numerical simulation and field cases, we found a "doublepeak" gas production profile (DP-GPP) for the well in SIR. The GPP of UDR is also of a "double peak" type, while that of DDR is of a "single peak" type. These types occur because gravitational forces increase the levels of water migration in UDR and obstruct those of DDR, creating different starting times for methane desorption and different periods of time required to reach peak desorption rates, resulting in a time difference. This time difference in methane desorption observed between UDR and DDR has led to the formation of a DP-GPP. Under a larger drainage area (continuous and homogeneous formation conditions), the continuous outward expansion of the desorption range gradually delays the formation of the DP-GPP and make it appeared later. Since methane supplies are affected by surrounding wells, the stronger well interference is likely to fail to form a DP-GPP. The timing of DP-GPP occurrence is gradually delayed with increasing burial depth due to a decrease in permeability.
机译:中国煤储层的浸渍角度大大变化,其中Junggar盆地的南部边缘通常大于50度,使其成为陡峭倾斜的水库(先生)。在单一的影响范围内,重力在煤层气(CBM)井中的上浸储层(UDR)和下浸储存器(DDR)的不同作用。由于UDR和DDR的深度,储层压力,储层压力,煤气含量和渗透率水平存在大的差异。这些差异控制了SIR井的气体生产型材(GPP)的特征。为了在不同的煤储层DIP角下研究CBM井的GPP,Eclipse数值模拟软件用于模拟0度/ 10度/ 20度/ 30度/ 40度/ 50度/ 60度/ 40度/ 60度的倾角/ 70度/ 80度。比较了在UDR和DDR中具有不同倾角的水库中的井中的GPP。通过分析UDR和DDR的水饱和度,储层压力和气体含量特征,探讨了GPP的形成机制。现场盒用于验证数值模拟结果的准确性。从数值模拟和现场案例的结果,我们在SIR中找到了“DoublePeak”气体生产型材(DP-GPP)。 UDR的GPP也具有“双峰”类型,而DDR的TDR是“单峰”类型。这些类型发生,因为引力力增加了UDR中的水迁移水平并阻碍DDR的水平,为达到峰解吸速率所需的甲烷解吸和不同时间段产生不同的开始时间,导致时间差。在UDR和DDR之间观察到的甲烷解吸的这种时差导致了DP-GPP的形成。在较大的排水区(连续和均匀的形成条件)下,解吸范围的连续向外膨胀逐渐延迟了DP-GPP的形成,并使其稍后出现。由于甲烷供应受到周围孔的影响,因此越强的干扰可能无法形成DP-GPP。由于渗透率降低,DP-GPP发生的定时逐渐延迟,随着埋藏深度而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号