...
首页> 外文期刊>Journal of Petroleum Science & Engineering >Petrophysical interpretation of laboratory pressure-step-decay measurements on ultra-tight rock samples. Part 2 – In the presence of gas slippage, transitional flow, and diffusion mechanisms
【24h】

Petrophysical interpretation of laboratory pressure-step-decay measurements on ultra-tight rock samples. Part 2 – In the presence of gas slippage, transitional flow, and diffusion mechanisms

机译:超紧岩样对实验室压力阶梯衰减测量的岩石物理解释。 第2部分 - 在存在气体滑动,过渡流和扩散机制的情况下

获取原文
获取原文并翻译 | 示例

摘要

AbstractUltra-tight formations generally exhibit heterogeneous, anisotropic, and pressure-dependent petrophysical properties. Conventional core analyses tend to generate inconsistent petrophysical estimates when the physical measurements are performed on different core samples extracted from ultra-tight formations. The discrepancies in petrophysical estimates are further escalated due to pressure- and pore-size-dependent fluid flow mechanisms in the nanopores of ultra-tight rocks. In the first part of this two-paper series publication, a method is proposed to simultaneously estimate four petrophysical properties by inverting laboratory-based pressure-step-decay measurement on a single ultra-tight rock sample; thereby, circumventing the petrophysical inconsistencies due heterogeneity and anisotropy. In this second part, an inversion algorithm is developed to simultaneously estimate six petrophysical parameters by processing the laboratory pressure-step-decay measurements. Similar to the first part, the laboratory step-decay measurement involves nitrogen gas injection into an ultra-tight rock sample at multiple stepwise pressure increments and high-resolution pressure-decay measurement at the outlet, which is followed by a deterministic inversion of the measured downstream pressure data based on numerical finite-difference modeling of nitrogen gas flow in the ultra-tight rock sample. Unlike the first part, the forward model of the nitrogen flow through the nanoscale pores of the ultra-tight rock samples accounts for not only the gas slippage but also transitional flow and Knudsen diffusion.This work improves the petrophysical estimates previously obtained from the inversion of pressure-step-decay measurements modeled based on only a Klinkenberg-type gas slippage as proposed in the first part. A transitional transport model is implemented to account for the separate and simultaneous occurrence of gas slippage and diffusion across an ultra-tight rock sample during a pressure-step-decay measurement performed in the pore pressure range of 5 psi to 500 psi at room temperature. The proposed interpretation method was applied to nine 2-cm-long, 2.5-cm-diameter core plugs extracted from a 1-ft3ultra-tight pyrophyllite block. We estimated the intrinsic permeability, effective porosity, pore-volume compressibility, pore throat diameter, and two slippage-diffusion coefficients of each sample. Estimation accuracy relies on the forward model of the fluid flow in ultra-tight rock sample and on the error minimization algorithm implemented in the inversion scheme. For the nine ultra-tight samples, on an average, the estimated intrinsic permeability, effective porosity, pore-volume compressibility, and pore throat diameter are 86 nd, 0.036, 2.6E-3 psi?1, and 195?nm, respectively. Notably, the two slippage-diffusion coefficients indicate that the gas transport mechanism in the nine ultra-tight pyrophyllite samples during the pressure-step-decay measurement is completely dominated by slip flow without any Knudsen diffusion or transitional flow, despite the Knudsen numbers across each sample during the entire duration of the pressure-step-decay measurements were determined to be in the range of 0.01–1. This observation contradicts the widely accepted qualitative classification of gas transport mechanism based on the Knudsen numbers and mandates an inversion-based approach to identify the fluid flow mechanism and an appropriate fluid flow model for nanoscale pores.
机译:<![CDATA [ 抽象 超紧的地层通常表现出异质,各向异性和压力依赖性的岩石物理性质。当在从超紧密地层提取的不同核心样本上进行物理测量时,常规核心分析倾向于产生不一致的岩石物理估计。由于超紧岩石的纳米孔中的压力和孔径依赖性流体流动机制,岩石物理估计的差异进一步升级。在本两个纸系列出版物的第一部分中,提出了一种方法,通过在单个超紧的岩石样品上反转实验室的压力步进衰减测量来同时估计四种岩石物理;由此,避免岩石物理不一致到期异质性和各向异性。在该第二部分中,开发了一种反演算法以通过处理实验室压力步进衰减测量来同时估计六种剥离参数。类似于第一部分,实验室步骤衰减测量涉及在出口处以多个逐步压力增量和高分辨率压力衰减测量在超紧的岩石样品中进入超紧的岩石样品,然后进行测量的确定性反转基于数值有限差异建模的氮气流动在超紧岩样中的下游压力数据。与第一部分不同,氮气流过超紧岩样品的纳米级孔的前向模型不仅占气体滑动,而且占过渡流程和knudsen扩散。 这项工作改善了从基于第一部分所提出的Klinkenberg型气体滑动的压力 - 步陀料测量的反转来改善先前获得的岩石物理估计。实施过渡运输模型以考虑在室温下在5psi至500psi的孔隙压力范围至500psi的压力 - 步进衰减测量期间在超紧的岩石样品中分离和同时出现气体滑动和扩散。将所提出的解释方法应用于从1-FT 超细纤维细胞块。我们估计了每个样品的内在渗透性,有效的孔隙率,孔隙率压缩性,孔喉直径和两个滑动扩散系数。估计精度依赖于超紧岩样本中的流体流动的前向模型以及在反转方案中实现的误差最小化算法。对于九个超细样本,平均估计的内在渗透性,有效孔隙率,孔隙体积压缩性和孔喉直径为86 nd,0.036,2.6e-3 psi ?1 ,和195?nm。值得注意的是,两个滑动扩散系数表明,在压力 - 步骤衰减测量期间,九个超紧的纤维素样品中的气体传输机制通过滑动流动完全由滑动流动而不是任何knudsen扩散或过渡流程,尽管每个都有knudsen数在整个持续时间的压力 - 步骤衰减测量期间的样品被确定为0.01-1的范围。该观察结果与基于Chaudsen号码的气体传输机制的广泛接受的定性分类相矛盾,并授权基于反转的方法来鉴定流体流动机制和适当的纳米镜孔的流体流动模型。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号