首页> 外文期刊>Journal of Petroleum Science & Engineering >An integrated workflow for fracture propagation and reservoir simulation in tight oil
【24h】

An integrated workflow for fracture propagation and reservoir simulation in tight oil

机译:封口油骨折传播和储层模拟的综合工作流程

获取原文
获取原文并翻译 | 示例
       

摘要

Various fracture-propagation models have been used to capture complex hydraulic fracture (HF) geometry. However, they cannot obtain the production performance. Besides, many researchers developed reservoir simulators to obtain production performance with given fracture geometry. However, these geometries are easy to deviate from the reality of a certain reservoir. To fill this gap, there is an urgent demand to integrate the simulation of fracturing and production processes. In this work, we present an integrated workflow for fracture-propagation and reservoir simulation for tight oil. First, we employ cohesive zone model (CZM) to simulate fracture propagation. In comparison with previous studies, our CZM can simulate complex fractures. Then, we apply the complex fracture geometry to embedded discrete fracture model (EDFM). In this reservoir simulator, nonlinear flow in the tight matrix, complex HF geometry, and pressure-dependent fracture permeability (stress sensitivity effect) are considered simultaneously. Finally, we obtain production performance of this fractured well. To verify the reliability of our models, we compare the results of laboratory experiment and commercial simulator with CZM and EDFM, respectively. Using this workflow, we studied the effect of geological factor (i.e. natural fracture distribution) and fracturing schedule (i.e. injection rate) on production performance. Results reveal that the cumulative oil production in the case with regular natural fracture (NF) is 1.67% higher than that with staggered NF, and 14.6% higher than that without NF. There is an optimal injection rate to maximum production performance. In this case, medium injection rate increases cumulative oil production by 2.42% than higher injection rate, and 1.1% than lower injection. Most importantly, the continuous simulation of fracturing and production processes is implemented in our proposed simulation workflow. In this way, this workflow can be used to optimize both fracturing and production schedule to maximize production performance and/or economic benefit for tight oil in our future work. Furthermore, our method can be further extended to the simulation of multi-stage fractured horizontal well (MFHW) in tight oil or other unconventional oil and gas resources.
机译:已经使用各种骨折 - 传播模型来捕获复杂的液压骨折(HF)几何形状。但是,他们无法获得生产性能。此外,许多研究人员开发了储层模拟器,以获得具有裂缝几何形状的生产性能。然而,这些几何形状易于偏离某个水库的现实。为了填补这种差距,迫切需要整合压裂和生产过程的模拟。在这项工作中,我们为紧身油的骨折传播和储层模拟提供了一个综合的工作流程。首先,我们采用凝聚区模型(CZM)来模拟骨折传播。与先前的研究相比,我们的CZM可以模拟复杂的骨折。然后,我们将复杂的骨折几何形状应用于嵌入的离散裂缝模型(EDFM)。在该储层模拟器中,同时考虑紧密基质,复合HF几何形状和压力依赖性裂缝渗透率(压力敏感效应)的非线性流动。最后,我们获得了这种骨折的生产性能。为了验证我们模型的可靠性,我们分别使用CZM和EDFM进行实验室实验和商业模拟器的结果。使用此工作流程,我们研究了地质因子(即自然骨折分布)和压裂时间表(即注射率)对生产性能的影响。结果表明,常规自然骨折(NF)的累积油生产比交错NF的含量高1.67%,比没有NF的不足14.6%。最佳注射速率为最大的生产性能。在这种情况下,培养基注入速率将累积油产量增加2.42%,而不是较高的注射率,而不是降低注射率为1.1%。最重要的是,在我们提出的模拟工作流程中实施了压裂和生产过程的连续模拟。通过这种方式,这种工作流程可用于优化压裂和生产计划,以最大限度地提高我们未来工作中的紧密石油的生产性能和/或经济效益。此外,我们的方法可以进一步扩展到拧紧油或其他非传统石油和天然气资源中的多级断裂水平井(MFHW)的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号