...
首页> 外文期刊>Journal of Petroleum Science & Engineering >Fractal analysis of the pore structure for clay bound water and potential gas storage in shales based on NMR and N-2 gas adsorption
【24h】

Fractal analysis of the pore structure for clay bound water and potential gas storage in shales based on NMR and N-2 gas adsorption

机译:基于NMR和N-2气体吸附的粘土结合水和潜在气体贮藏的孔隙结构分形分流分析

获取原文
获取原文并翻译 | 示例
           

摘要

Fractal dimension (D) is a critical parameter to estimate the heterogeneity of complex pore structure in shale gas reservoirs. To quantify the fractal dimension of various pore types and evaluate their implications on shale effective porosity and gas storage capacity in potential, we performed fractal analysis based on experimental results of low-field nuclear magnetic resonance (LF-NMR) and low-pressure N-2 gas adsorption (LP-N-2-GA) in Permian Carynginia shales. By comparing the calculated fractal dimensions based on the two approaches, we analyzed the 'surface fractal dimension' for ineffective pores occupied by clay bound water (CBW) and the 'volume fractal dimension' for effective pores (D-eff) holding removable fluids for the first time in shales. The NMR-based CBW pore fractal dimension (D-cbw) is linear positively correlated with the fractal dimension of micropore surface (Dl) (R-2= 0.91) and the volume of CBW (R-2= 0.58), while negatively correlated with effective porosity (R-2= 0.58). The NMR-based effective pore fractal dimension (D-eff) is linear positively correlated with the fractal dimension of meso/macropore volume (D2) (R-2= 0.82) and presents a good positive correlation with gas storage capacity (R-2= 0.80). The results indicate that CBW largely complicates the fractal geometry of nanoscaled pore network and potentially resist effective fluid flows in shales. The pore surface of higher heterogeneity (higher Dl) associates with larger surficial CBW retention and would further block the effective pore space for fluid transport. The meso/macropore volumes of higher complexity (higher D2) is intimate with the larger heterogeneity in effective pores for the higher potential of hydrocarbon storage capacity in gas shales.
机译:分形尺寸(d)是估算页岩气藏复杂孔隙结构的异质性的关键参数。为了量化各种孔隙类型的分形维数,并评估其对潜在的对页岩有效孔隙率和储气能力的影响,我们基于低现场核磁共振(LF-NMR)和低压N-的实验结果进行了分形分析2型气体吸附(LP-N-2-GA)在二叠纪Carynginia Shales。通过基于这两种方法比较计算的分形尺寸,我们分析了粘土结合水(CBW)占用的无效孔的“表面分形尺寸”和用于保持可拆卸流体的有效孔(D-EFF)的“体积分形维数”第一次在Shales。基于NMR的CBW孔分形尺寸(D-CBW)与微孔表面(DL)的分形尺寸(R-2 = 0.91)和CBW的体积(R-2 = 0.58)的线性呈正相关,同时呈负相关具有有效孔隙率(R-2 = 0.58)。基于NMR的有效孔分形尺寸(D-EFF)与Meso / Macropore体积(D2)的分形尺寸(R-2 = 0.82)线性呈正相关,并呈现出与储气容量的良好正相关(R-2 = 0.80)。结果表明,CBW在很大程度上使纳米孔隙网络的分形几何形状复杂化,潜在抵抗HALES中的有效流体流动。具有较大曲面CBW保留的更高异质性(较高DL)的孔表面,并进一步阻止有效的流体运输孔隙空间。较高复杂性(更高D2)的Meso / Macropore体积与有效孔隙中的较大的异质性亲密,用于储气储气器中的烃储存能力的较高潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号