...
首页> 外文期刊>Journal of physical chemistry letters >Dynamics of Charge Transfer and Multiple Exciton Generation in the Doped Silicon Quantum Dot–Carbon Nanotube System: Density Functional Theory-Based Computation
【24h】

Dynamics of Charge Transfer and Multiple Exciton Generation in the Doped Silicon Quantum Dot–Carbon Nanotube System: Density Functional Theory-Based Computation

机译:掺杂硅量子点 - 碳纳米管系统中电荷转移和多个激子生成的动态:密度函数理论基础计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We use the Boltzmann transport equation (BE) to study time evolution of a photoexcited state, including phonon-mediated exciton relaxation, multiple exciton generation (MEG), and energy-transfer processes. BE collision integrals are derived using Kadanoff–Baym–Keldysh many-body perturbation theory (MBPT) based on density functional theory (DFT) simulations, including exciton effects. We apply the method to a nanostructured p –n junction composed of a 1 nm hydrogen-terminated Si quantum dot (QD) doped with two phosphorus atoms (Si_(36)P_(2)H_(42)) adjacent to the (6, 2) single-wall carbon nanotube (CNT) with two chlorine atoms per two unit cells adsorbed to the surface. We find that an initial excitation localized on either the QD or CNT evolves into a transient charge-transfer (CT) state where either electron or hole transfer has taken place. The CT state lifetime is about 40 fs. Also, we study MEG in this system by computing internal quantum efficiency (QE), which is the number of excitons generated from an absorbed photon during relaxation. We predict efficient MEG starting at 3E _(g) ? 1.5 eV and with QE reaching QE = 1.65 at about 5E _(g), where E _(g) ? 0.5 eV is the lowest exciton energy, i.e., the gap. However, we find that including energy transfer and MEG effects suppresses CT state generation.
机译:我们使用Boltzmann Transport Aquition(be)来研究运动透射状态的时间演变,包括声子介导的激子放松,多个激子生成(MEG)和能量转移过程。基于密度泛函理论(DFT)模拟,包括Kadanoff-Baym-Keldysh多体扰动理论(MBPT),碰撞积分是碰撞的积分。我们将该方法应用于由掺杂有两个磷原子(Si_(36)P_(2)H_(42))的1nm氢终止的Si量子点(QD)组成的纳米结构的 p - n结。与(6,2)单壁碳纳米管(CNT)相邻,每次具有两种单位细胞吸附到表面的两个氯原子。我们发现,在QD或CNT上定位的初始激励演变为瞬态电荷转移(CT)状态,其中已经发生了电子或孔转移。 CT状态寿命约为40 FS。此外,我们通过计算内部量子效率(QE)来研究该系统的MEG,这是在松弛期间由吸收的光子产生的激子的数量。我们预测从3 e _(g)开始的高效meg? 1.5 EV和QE达到QE = 1.65,在约5 _(g),其中 _(g)? 0.5eV是最低的激子能量,即差距。但是,我们发现包括能量转移和MEG效果抑制CT状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号