...
首页> 外文期刊>Journal of orthopaedic research >Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics
【24h】

Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics

机译:围流和细胞外基质结构性能对软骨细胞力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

ABSTRACT Understanding the mechanical factors that drive the biological responses of chondrocytes is central to our interpretation of the cascade of events that lead to osteoarthritic changes in articular cartilage. Chondrocyte mechanics is complicated by changes in tissue properties that can occur as osteoarthritis (OA) progresses and by the interaction between macro‐scale , tissue level, properties, and micro‐scale pericellular matrix (PCM) and local extracellular matrix (ECM) properties, both of which cannot be easily studied using in vitro systems. Our objective was to study the influence of macro ‐ and micro ‐scale OA‐associated structural changes on chondrocyte strains. We developed a multi‐scale finite element model of articular cartilage subjected to unconfined loading, for the following three conditions: (i) normal articular cartilage, (ii) OA cartilage (where macro and micro‐scale changes in collagen content, matrix modulus, and permeability were modeled), and (iii) early‐stage OA cartilage (where only micro‐scale changes in matrix modulus were modeled). In the macro‐scale model, we found that a depth‐dependent strain field was induced in both healthy and OA cartilage and that the middle and superficial zones of OA cartilage had increased tensile and compressive strains. At the micro‐scale , chondrocyte shear strains were sensitive to PCM and local ECM properties. In the early‐OA model, micro‐scale spatial softening of PCM and ECM resulted in a substantial increase (30%) of chondrocyte shear strain, even with no structural changes in macro‐scale tissue properties. Our study provides evidence that micromechanical changes at the cellular level may affect chondrocyte activities before macro‐scale degradations at the tissue level become apparent. ? 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:721–729, 2018.
机译:摘要了解推动软骨细胞生物反应的机械因素是我们对导致关节软骨逐渐变化的逐步发生变化的级联事件的核心。软骨细胞力学通过随着骨关节炎(OA)的进展和通过宏观,组织水平,性质和微观围髓基质(PCM)和局部细胞外基质(ECM)性质之间的相互作用而发生的组织性质的变化复杂化两者都不能使用体外系统轻松研究。我们的目标是研究宏观和微型OA相关结构变化对软骨细胞菌株的影响。我们开发了一个多尺寸的有限元模型,其关节软骨受到无束缚的负载,适用于以下三种条件:(i)正常关节软骨,(ii)OA软骨(其中宏观和微观含量的胶囊含量,矩阵模量,和渗透性被建模),(III)早期的OA软骨(其中仅建模了基质模量的微观变化)。在宏观规模模型中,我们发现在健康和OA软骨中诱导深度依赖性应变场,并且OA软骨的中间和浅地带具有增加的拉伸和压缩菌株。在微观尺寸下,软骨细胞剪切菌株对PCM和局部ECM性能敏感。在早期OA模型中,PCM和ECM的微级空间软化导致了软骨细胞剪切菌株的大幅增加(30%),即使在宏观组织特性没有结构变化。我们的研究提供了证据,即细胞水平的微机械变化可能会影响组织水平宏观降解之前的软骨细胞活性变得明显。还2017年骨科研究会。由Wiley期刊出版,Inc.J Orthop Res 36:721-729,2018。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号