首页> 外文期刊>Journal of natural gas science and engineering >Numerical study of the effect of propped surface area and fracture conductivity on shale gas production: Application for multi-size proppant pumping schedule design
【24h】

Numerical study of the effect of propped surface area and fracture conductivity on shale gas production: Application for multi-size proppant pumping schedule design

机译:丙位表面积和断裂电导率对页岩气产量影响的数值研究:多尺寸支路泵送时间表设计的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Hydraulic fracturing is a technique extensively used in the oil and gas industry, where water, proppant (sand) and additives are injected into unconventional reservoirs to enhance the recovery of shale hydrocarbon. Although some previous studies have developed pumping schedules that maximize gas production for a single-size proppant, there are very few studies that consider the effect of varying proppant diameters across pumping stages on shale gas production. Motivated by this, we carried out an extensive sensitivity analysis to determine the effect of different proppant diameters on the average fracture conductivity (FC), average propped surface area (PSA) and cumulative shale gas production volume. We found out that the cumulative shale gas production volume depends on both the average PSA and average FC. We also found out that small-diameter proppant resulted in higher average PSA and lower average FC, whereas large-diameter proppant resulted in lower average PSA and higher average FC. Hence, we designed a multi-size proppant pumping schedule considering both of these parameters into account for simultaneously propagating multiple fractures to maximize shale gas production from unconventional reservoirs. Since the size of injected proppant particles determines the average PSA and average FC for the propped hydraulic fractures, we developed a novel framework called Sequentially Interlinked Modeling Structure (SIMS) to predict the average PSA, average FC and cumulative shale gas production volume at the end of 10 years for a given pumping schedule. Then, we used this SIMS framework to obtain a multi-size proppant pumping schedule that maximizes shale gas production. Finally, we demonstrated that the obtained pumping schedule gives a cumulative shale gas production volume greater than the values obtained from the existing pumping schedules.
机译:液压压裂是一种用于石油和天然气工业的技术,其中水,支撑剂(沙子)和添加剂注入非传统的储层,以增强页岩烃的恢复。虽然一些先前的研究已经开发出泵送调度,但最大化气体生产的泵送调度,虽然很少有研究,但考虑了不同的支撑件直径在页岩气产量上的泵浦阶段的效果。由此激励,我们进行了广泛的敏感性分析,以确定不同支撑剂直径对平均裂缝电导率(Fc),平均支撑表面积(PSA)和累积页岩气产量的影响。我们发现累积页岩气产量取决于平均PSA和平均FC。我们还发现小直径的支撑剂导致平均PSA和较低的平均Fc,而大直径支撑剂导致较低的PSA和更高的平均Fc。因此,我们设计了一种考虑到这些参数的多尺寸支撑剂泵送计划,以便同时传播多个骨折以使来自非传统水库最大化页岩气产量。由于注入的支撑剂粒子的尺寸决定了支撑液压骨折的平均PSA和平均FC,因此我们开发了一种名为依次交互的建模结构(SIMS)的新型框架,以预测末端的平均PSA,平均FC和累积页岩气产量。给定的泵送时间表10年。然后,我们使用了这个SIMS框架来获得多尺寸的支撑剂抽水计划,最大化页岩气产量。最后,我们证明所获得的泵送时间表给出累积的页岩气产量大于从现有泵送计划获得的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号