首页> 外文期刊>Journal of natural gas science and engineering >Simulation of flow behaviour through fractured unconventional gas reservoirs considering the formation damage caused by water-based fracturing fluids
【24h】

Simulation of flow behaviour through fractured unconventional gas reservoirs considering the formation damage caused by water-based fracturing fluids

机译:考虑水基压裂液引起的形成损害,通过断裂非传气体储层模拟流动性能

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing is essential for commercial-scale gas production from many unconventional gas reservoirs. While the effectiveness of the fractures created is associated with the stress created during the fracturing process, the use of water in the hydraulic fracturing process has been found to significantly reduce fracturing efficiency. In particular, the formation damage caused by water imbibition may have a significant negative impact on the flow capacity through both created fractures and rock matrix. These effects can be minimised by using non-water based fracking fluid such as CO2. The intention of this study is to investigate the formation damage caused by water invasion and multi-cycle confinement on the gas production of fractured reservoirs. A laboratory-scale discrete fracture model (DFM) was developed based on the experimental results of a series of permeability tests conducted on intact and fractured siltstone samples under steady-state conditions at room temperature using gaseous CO2and water as the injection fluids. The developed model shows the ability to simulate the flow behaviour of fractured samples. Based on the laboratory-scale model, an expanded DFM model of an assumed fractured reservoir with a horizontal well was then built to quantitatively investigate the influences of multi-cycle confinement and water invasion damage on gas production from gas reservoir.Based on the results of the expanded scale simulation, when the effect of water invasion damage on matrix permeability is not considered and only the change of fracture aperture is considered, the ratio of the rate of gas production from fractured formation without any formation damage, fractured formation suffering from the effect of multi-cycle confinement, fractured formation suffering from the combination effect of multi-cycle confinement and water invasion damage, and unfractured formation is around 15.15, 5.14, 2.23, 1 respectively, and the corresponding ratio of total gas production is around 17.62, 4.86, 2.13, 1 respectively, over a 10-year period. If the effects of water invasion damage on matrix permeability and fracture permeability are considered at the same time, the ratio of the rate of gas production rate from fractured formation without any damage on matrix permeability in the damage zone, fractured formation with 30% of initial permeability in the damage zone, fractured formation with 3% of initial permeability in the damage zone, and unfractured formation is around 2.23, 1.69, 0.94, 1 respectively, and the ratio of total gas production is 2.13, 1.54, 0.92, 1 respectively. This indicates that formation damage caused by multi-cycle confinement and fracturing water invasion can greatly impair gas production from unconventional gas reservoirs.
机译:液压压裂对于许多非传统气体储层的商业规模天然气生产至关重要。虽然所产生的裂缝的有效性与压裂过程中产生的应力相关,但已经发现使用水在水力压裂过程中的使用显着降低了压裂效率。特别地,由水吸收引起的形成损坏可以通过产生的裂缝和岩石基质对流量产生显着的负面影响。可以通过使用诸如CO 2的非水的压裂流体最小化这些效果。本研究的目的是探讨由水入侵和裂缝储层气体生产的多周期限制造成的形成损害。基于使用气态CO2和水作为注射液,基于在室温下在稳态条件下进行的一系列渗透性试验的实验结果,基于在室温下的完整和破碎的硅铁晶样品的一系列渗透性试验的实验结果。开发的模型显示了模拟裂缝样品的流动行为的能力。基于实验室规模模型,随着水平井的假定裂缝储层的扩展DFM模型,以定量调查多周期限制和水入侵损伤对气体储层气体生产的影响。基于结果扩展尺度模拟,当不考虑对矩阵渗透​​性的抗侵蚀性损伤的影响,并且考虑了骨折孔径的变化,气体产生的速率与裂缝形成的比率没有任何形成损伤,骨折形成患有效果多循环监禁,患有多循环监禁和水入侵损伤的组合效果的裂缝形成,分别为15.15,5.14,2.23,15.15,5.14,23,1,总天然气产量的比例约为17.62,4.86分别在10年期间,2.13,1.1。如果同时考虑对基质渗透性和骨折渗透性的水侵袭损伤的影响,则气体生产率与裂缝形成的比率没有损伤的损伤区中的基质渗透率,裂缝形成为30%损伤区中的渗透率,损伤区中突破形成的裂缝形成,分别为2.23,1.69,0.94,1的初始渗透性,分别为2.23,1.69,0.94,1%,分别为2.13,1.54,0.92,1%。这表明由多循环限制和压裂水入侵引起的形成损坏可以极大地损害来自非传统气体藏的天然气生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号