首页> 外文期刊>Journal of natural gas science and engineering >Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures
【24h】

Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures

机译:含有摩擦和胶泥天然裂缝的形成裂缝网络传播的扩展有限元模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Shale gas reservoirs often need hydraulic fracturing treatments to create complex fracture network to enhance production. Frictional and cemented natural fractures are often contained in shale formations. The interactions between the hydraulic fractures and these two types of pre-existing natural fractures are different. In this study, we established a two-dimensional fluid-solid coupled hydraulic fracturing model using the extended finite element method (XFEM) to simulate the interactions between hydraulic fractures and natural fractures, and further the formation of fracture network. The results show that when a hydraulic fracture intersects with a natural fracture, the hydraulic fracture may be arrested and propagate along the direction of natural fracture, or cross the natural fracture without being affected. For the frictional natural fractures, the intersection angle, frictional coefficient, stress anisotropy and rock tensile strength have a significant influence on creating fracture network. It is found that decreasing stress difference and interfacial friction, or increasing rock tensile strength may lead to more complex fracture network. For the cemented natural fractures, the intersection angle and the ratio of cement toughness and rock toughness play critical roles in the creation of fracture network. Smaller intersection angle and cement toughness of natural fractures and larger rock fracture toughness often lead to more complex fracture network. In addition, for the same initial geometrical configuration of natural fractures, hydraulic fracturing often leads to more complex fracture network in formations containing frictional natural fractures compared with formations containing cemented natural fractures. These findings offer new insights into the nature and degree of fracture complexity, helping to optimize hydraulic fracturing design in shale gas reservoirs.
机译:页岩气水库经常需要液压压裂处理,以创造复杂的骨折网络来增强生产。摩擦和粘合的天然骨折通常包含在页岩形成中。液压骨折和这两种类型的预先存在的自然骨折之间的相互作用是不同的。在这项研究中,我们建立了一种使用延长的有限元方法(XFEM)建立了二维流体固体耦合液压压裂模型,以模拟液压骨折和自然骨折之间的相互作用,进一步形成裂缝网络的形成。结果表明,当液压断裂与自然骨折相交时,液压骨折可以沿着天然骨折的方向被捕并传播,或者在不受影响的情况下穿过自然骨折。对于摩擦自然裂缝,交叉角,摩擦系数,应力各向异性和岩石拉伸强度对产生骨折网络具有显着影响。结果发现,降低应力差和界面摩擦,或增加岩石拉伸强度可能导致更复杂的裂缝网络。对于粘合的自然裂缝,交叉角和水泥韧性和岩石韧性的比率在裂缝网络的产生中起着关键作用。自然骨折的较小的交叉角和水泥韧性,较大的岩石断裂韧性通常导致更复杂的裂缝网络。另外,对于自然骨折的相同初始几何构型,液压压裂通常导致含有摩擦自然骨折的形成的摩擦自然骨折的形成更复杂的裂缝网络。这些发现提供了新的洞察性质和程度的骨折复杂性,有助于优化页岩气藏的液压压裂设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号