首页> 外文期刊>Journal of natural gas science and engineering >Numerical analysis of depressurization production of natural gas hydrate from different lithology oceanic reservoirs with isotropic and anisotropic permeability
【24h】

Numerical analysis of depressurization production of natural gas hydrate from different lithology oceanic reservoirs with isotropic and anisotropic permeability

机译:不同岩性海洋储层对各向性和各向异性渗透性的自然气水合物减压生产的数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

Natural gas hydrate (NGH) is a promising alternative energy and mainly distributes in deep oceanic sediments. The intrinsic permeability of hydrate-bearing layers can potentially influence heat and pressure transfer during depressurization-induced NGH dissociation. By taking siltstone, sand and clay reservoirs in Shenhu area of South China Sea as examples, this study numerically investigates the effects of the magnitude and anisotropy of reservoir permeability on NGH production process and main physical field evolution. Results reveal that permeability anisotropy could impede advective interaction of fluids in vertical direction, significantly changing temperature and pressure evolution during NGH dissociation. Consequently, NGH dissociation slows down, delaying the coming of peak gas production rate. Some degrees of permeability anisotropy even lead to much earlier termination of NGH dissociation. In this case, the more permeable sand reservoir could possibly have a lower gas production potential than the less permeable siltstone and clay reservoirs. The permeable overburden limits the fluid pressure reduction and weakens the efforts of depressurization production. The re-production by further lowering well pressure only lasts for a short time. Comparatively, the depressurization of constant production mass rate is more effective but only provides a small contribution for the total gas yield. (C) 2017 Elsevier B.V. All rights reserved.
机译:天然气水合物(NGH)是一个有前途的替代能源,主要分布在深海沉积物中。含水层的固有渗透性可能会在减压诱导的NGH解离过程中影响热量和压力转移。通过在南海的神湖地区采用硅铁岩,沙子和粘土储层作为例子,该研究数值研究了水库渗透率对NGH生产过程的影响和主要物理场演化的影响。结果表明,渗透性各向异性可能妨碍液体在垂直方向上平均相互作用,显着改变了NGH解离期间的温度和压力演化。因此,NGH解离减速,延迟了峰值气体生产率的到来。一些渗透性各向异性甚至导致NGH解离的早期终止。在这种情况下,更渗透的砂储存器可能具有比不透水硅铁晶和粘土储存器更低的气体生产潜力。可渗透的覆盖层限制了流体压力降低,削弱了减压生产的努力。通过进一步降低井压重新生产仅持续很短的时间。相比之下,恒定产量质量率的减压更有效,但仅对总气体产率提供了小的贡献。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号