...
首页> 外文期刊>Journal of Non-Newtonian Fluid Mechanics >Viscosity measurement of non-Newtonian fluids in pressure-driven flows of general geometries based on energy dissipation rate
【24h】

Viscosity measurement of non-Newtonian fluids in pressure-driven flows of general geometries based on energy dissipation rate

机译:基于能量耗散速率的一般几何形状的压力驱动流动中非牛顿流体的粘度测量

获取原文
获取原文并翻译 | 示例
           

摘要

A novel viscosity measurement method is presented, which can be applied to the pressure-driven flow of an inelastic non-Newtonian fluid in an arbitrary geometry. The method is established on the balance of the energy dissipation rate such that the external power is dissipated within the system as viscous dissipation in a laminar regime in the absence of a body force. The effective viscosity can be expressed algebraically in terms of the pressure drop and flow rate and the corresponding effective shear rate is readily determined by flow rate; the relationship between effective viscosity and effective shear rate is found identical to the true material viscosity behavior. The two flow numbers, which depend on flow geometry only and are almost independent of fluid rheology, are involved: the coefficient of energy dissipation rate that associates the total energy dissipation rate to the Reynolds number; and the coefficient of effective shear rate, which relates flow rate to effective shear rate. After analytically validating the method for pressure-driven flow of a power-law fluid in a circular pipe, three different flows with complicated geometries were tested: numerical validations for axisymmetric expansion-contraction flows and flows in a Kenics mixer, and experimental validation for flows in a complex microfluidic array with Xanthan gum solutions. Errors in viscosity were less than 2.9% and 16% in simulations and in experiments, respectively. The method is well-suited for on-line monitoring of in-situ viscosity for non-Newtonian fluid flow in industrial processes.
机译:提出了一种新的粘度测量方法,其可以应用于任意几何形状中的非弹性非牛顿流体的压力驱动流动。在能量耗散速率的平衡上建立该方法,使得在没有体力的情况下,在系统中消散外部电力作为层状制度的粘性耗散。在压降和流速方面可以代数表达有效粘度,并且通过流速容易地确定相应的有效剪切速率;发现有效粘度和有效剪切速率之间的关系与真实物质粘度行为相同。涉及仅依赖于流动几何的两个流量,几乎与流体流变学不同于流体流变学:将总能量耗散率与雷诺数相关联的能量耗散速率;和有效剪切速率系数,将流速与有效剪切速率相关。在分析透析圆形管道中的动力法流体的压力驱动的方法之后,测试了三种不同的复杂几何流量:轴对称扩展 - 收缩的数值验证流动,并且在kenics混合器中流动,以及流动的实验验证在具有黄原胶溶液的复杂的微流体阵列中。粘度的误差分别在模拟和实验中分别小于2.9%和16%。该方法非常适合于在工业过程中非牛顿流体流动原位粘度的在线监测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号