首页> 外文期刊>Journal of Materials Engineering and Performance >Surface Integrity of TA19 Notched Simulated Blades with Laser Shock Peening and Its Effect on Fatigue Strength
【24h】

Surface Integrity of TA19 Notched Simulated Blades with Laser Shock Peening and Its Effect on Fatigue Strength

机译:TA19缺口模拟刀片的表面完整性激光冲击喷丸及其对疲劳强度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

To reveal the fatigue strengthening mechanism of TA19 notched simulated blades with laser shock peening (LSP), surface integrity and fatigue strength were investigated. The surface morphology, residual stress, near-surface microstructure, fatigue strength and fatigue fracture morphology were analyzed by surface profiler, x-ray diffraction (XRD), transmission electron microscopy (TEM), QRG-100 servo-hydraulic fatigue test machine and scanning electron microscope (SEM). Results indicated that LSP induced surface micro-dents plastic deformations with a few microns in depth, surface compressive residual stresses and surface nano-grains of TA19 notched simulated blades. Compared with the as-received material, fatigue strengths of TA19 notched simulated blades were improved by 162% for LSP-1 and 218% for LSP-3. In addition, fatigue crack initiation (FCI) locations reduced after LSP, fatigue crack growth (FCG) rate decreased after LSP, and secondary cracks were observed in the FCI and FCG regions of fatigue fracture morphologies after LSP. Fatigue strengthening mechanism of TA19 notched simulated blades with LSP was compressive residual stresses and refined grains. Results could be beneficial to the application of LSP process in civil engines blades.
机译:为了揭示带激光震动(LSP)的TA19缺口模拟叶片的疲劳强度机理,研究了表面完整性和疲劳强度。通过表面分析仪,X射线衍射(XRD),透射电子显微镜(TEM),QRG-100伺服液压疲劳试验机和扫描分析了表面形态,残余应力,近表面微观结构,疲劳强度和疲劳断裂形态,透射电子显微镜(TEM),QRG-100伺服液压疲劳试验机和扫描电子显微镜(SEM)。结果表明,LSP诱导的表面微折叠塑性变形,深度深度,表面压缩残余应力和TA19缺口模拟叶片的表面纳米颗粒。与接收材料相比,LSP-3的LSP-1和218%的疲劳强度提高了162%,对于LSP-3,得到162%。此外,在LSP后,疲劳裂纹引发(FCI)位置减少,在LSP后,在LSP后降低,在LSP后的FCI和FCG区域中观察到次要裂缝和脱裂性裂缝形态的次级裂缝。带LSP的TA19缺口模拟叶片的疲劳强化机理是压缩残余应力和精制晶粒。结果可能有利于LSP过程在民用发动机刀片中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号