首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Molecular origin of efficient hole transfer from non-fullerene acceptors: insights from first-principles calculations
【24h】

Molecular origin of efficient hole transfer from non-fullerene acceptors: insights from first-principles calculations

机译:来自非富勒烯受体的有效孔转印的分子来源:从第一原理计算中的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the strong exciton binding energy (E-b) of organic materials, the energy offset between donor (D) and acceptor (A) materials is essential to promote charge generation in organic solar cells (OSCs). Yet an efficient exciton dissociation from non-fullerene acceptors (NFAs) began to be observed in D/A blends even at very low driving force for hole transfer (Delta H-h). The mechanism behind this efficient photoinduced hole transfer (PHT) remains unclear since current estimates from calculations of isolated molecules indicate that E-b > Delta H-h. Here we rationalize these discrepancies using density functional theory (DFT), the total Gibbs free energy method and the extended Huckel theory (EHT). First, we employed DFT to calculate E-b for NFAs of three representative groups (perylene diimide derivatives, indacenodithiophene and subphthalocyanines) as well as for fullerene acceptors (FAs). Considering isolated molecules in the calculations, we verified that E-b for NFAs is lower than for FAs but still higher than the experimental Delta H-h in which efficient PHT has been observed. Finding the molecular geometry of the excited state, we also obtain that the structural relaxation after photoexcitation tends to further decrease (increase) E-b for NFAs (FAs). This effect helps explain the delayed charge generation measured in some NFA systems. However, this effect is still not large enough for a significant decrease in E-b. We then applied EHT to quantify the decrease of E-b induced by energy levels coupling between stacked molecules in a model aggregate. We then estimated the number of stacked molecules so that E-b approaches Delta H-h's. We found that small NFA aggregates, involving around 5 molecules, are already large enough to explain the experiments. Our results are justified by the low energy barrier to the generation of delocalized states in these systems (especially for the hole delocalization). Therefore, they indicate that molecular systems with certain characteristics can achieve efficient molecular orbital delocalization, which is a key factor to allow an efficient exciton dissociation in low-driving-force systems. These theoretical findings provide a sound explanation to very recent observations in OSCs.
机译:由于有机材料的强激子结合能量(E-B),供体(D)和受体(A)材料之间的能量偏移对于促进有机太阳能电池(OSC)中的电荷产生至关重要。然而,即使在空穴转移(Delta H-H)的非常低的驱动力下,也可以在D / A混合物中开始从非富勒烯受体(NFAS)中的有效激子解离。由于来自分离分子的计算的电流估计表明E-B>ΔH-h的电流估计,因此该机制仍然不清楚。在这里,我们使用密度泛函理论(DFT)来合理化这些差异,总吉布斯自由能方法和延伸的哈奇理论(EHT)。首先,我们使用DFT来计算三个代表基团的NFA(Per Bernene二酰亚胺衍生物,茚环二烯酸丁蛋白和所述苯二酞)的E-B,以及富勒烯受体(Fas)。考虑到在计算中的分离分子,我们验证了NFAs的E-B低于Fas的E-B,但仍然高于观察到有效PHT的实验δH-H。找到激发态的分子几何形状,我们还获得了运动透射术后的结构松弛趋于进一步减少(增加)E-B用于NFAs(Fas)。这种效果有助于解释一些NFA系统中测量的延迟电荷产生。然而,这种效果仍然不足以足够大,因为E-B的显着降低。然后,我们施用EHT来量化模型聚集体中堆叠分子之间的能量水平偶联诱导的E-B的降低。然后,我们估计堆叠分子的数量,使E-B接近Delta H-H.我们发现涉及大约5分子的小NFA骨料已经足够大以解释实验。我们的结果由这些系统中的临床化状态产生的低能量屏障(特别是对于孔临床化)是合理的。因此,它们表明具有某些特性的分子系统可以实现有效的分子轨道临床化,这是允许在低驱动力系统中进行有效的激子解离的关键因素。这些理论发现对OSC中最近的观察结果提供了声音解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号