...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Combined control of the cation and anion to make ZnSnON thin films for visible-light phototransistors with high responsivity
【24h】

Combined control of the cation and anion to make ZnSnON thin films for visible-light phototransistors with high responsivity

机译:结合对阳离子和阴离子的控制,使Znsnon薄膜用于高响应度的可见光光电晶体管

获取原文
获取原文并翻译 | 示例
           

摘要

A novel oxynitride semiconductor, ZnSnON, is demonstrated. The design of this material follows the reported anion control strategy (N additives) to diminish the bandgap and the electron effective mass of ZnO on the one hand, and a cation control strategy (Sn additives) to circumvent the chemical stability problems of ZnON on the other. Comparative studies are conducted on the performance and stability of ZnSnON and ZnON films and their thin-film transistors (TFTs). It is shown that ZnSnON possesses superior transport properties and enhanced operation stability simultaneously. Such amelioration is owing to multiple factors, including the amorphous/nanocrystalline mixed phase and the bonding strength increase caused by the Sn-related oxide/oxynitride dominant in the back channel region. In addition, the Sn additives in ZnON do not alter the direct bandgap character, maintaining around 1.6 eV. The ZnSnON-TFT is photosensitive in the whole visible light region with a photoresponsivity higher than 6 x 10(3) A W-1. Considering the high-mobility, improved operation stability, and visible light sensing capability, this semiconductor can be used in a broad array of applications such as in active-matrix imaging arrays, interactive displays, flat X-ray detectors, etc.
机译:证明了一种新型氧氮化物半导体ZnSnon。此材料的设计遵循报告的阴离子控制策略(N添加剂),以一方面缩小带隙和电子有效质量的ZnO,以及阳离子控制策略(Sn添加剂),以规避Znon的化学稳定性问题其他。对比较研究进行了Znsnon和Znon膜的性能和稳定性及其薄膜晶体管(TFT)。结果表明,ZnSnon同时具有优异的运输性能和增强的操作稳定性。这种改善是由于多晶硅/纳米晶混合相和由后沟道区域中的SN相关氧化物/氮氧化物显性引起的无定形/纳米晶混合相和粘合强度增加。此外,Znon中的Sn添加剂不会改变直接的带隙字符,维持大约1.6 eV。 Znsnon-TFT在整个可见光区域中是光敏的,光学介绍高于6×10(3)W-1。考虑到高迁移率,改进的操作稳定性和可见光感测能力,该半导体可用于广泛的应用诸如主动矩阵成像阵列中,交互式显示器,扁平X射线检测器等。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    Chinese Acad Sci Key Lab Graphene Technol &

    Applicat Zhejiang Prov Ningbo 315201 Zhejiang Peoples R China;

    China Jiliang Univ Coll Opt &

    Elect Sci &

    Technol Hangzhou 310018 Zhejiang Peoples R China;

    Rutgers State Univ Dept Elect &

    Comp Engn Piscataway NJ 08854 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号