...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device
【24h】

Synapse behavior characterization and physical mechanism of a TiN/SiOx/p-Si tunneling memristor device

机译:锡/ SiOx / P-Si隧道函数装置的突触行为表征与物理机制

获取原文
获取原文并翻译 | 示例
           

摘要

The demand for large-scale deep learning neural networks has driven the development of nanoscale memristor devices, which perform brain-inspired neuromorphic computing. In this study, we present an electroforming free-tunneling junction device based on a TiN/SiOx/p-Si structure. This proposed device exhibited artificial synapse behaviors via applying pulse train. The impacts of pulse amplitude, width and interval were investigated for gradually modulating the conduction of the device. Particularly, short-term plasticity (STP) could be continually modulated by successive voltage sweeps or pulses. Symbolizing the relaxation time of memory ability could emulate the excitatory postsynaptic current (EPSC) of different pulse models. It is proposed that the variable-range hopping (VRH) and Fowler-Nordheim (FN) tunneling theories are responsible for gradual conduction change to mimic the bio-synapse based in the TiN/SiOx/p-Si memristor. This study provides further insights into the physical mechanisms of the gradual change in resistance for mimicking bio-synapse.
机译:对大型深度学习神经网络的需求推动了纳米级忆阻器设备的开发,其进行脑激发的神经形态计算。在这项研究中,我们基于锡/ SiOx / P-Si结构介绍了一种自由隧道结装置。该提出的装置通过施加脉冲列车表现出人工突触行为。研究了脉冲幅度,宽度和间隔的影响,以逐渐调节装置的传导。特别地,通过连续电压扫描或脉冲可以连续地调制短期可塑性(STP)。象征着记忆能力的放松时间可以模拟不同脉冲模型的兴奋性突触电流(EPSC)。提出,可变跳跃(VRH)和Fowler-Nordheim(FN)隧道理论负责逐步的传导变化,以模仿基于TIN / SIOX / P-SI忆阻器的生物突触。本研究提供了进一步的见解,进一步了解抗抗性模仿生物突触的抗性变化的物理机制。

著录项

  • 来源
  • 作者单位

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Southern Illinois Univ Elect &

    Comp Engn Dept 1230 Lincoln Dr Carbondale IL 62901 USA;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Chinese Acad Sci Inst Microelect 3 Bei Tu Cheng West Rd Beijing 100029 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

    Hebei Univ Key Lab Digital Med Engn Hebei Prov Coll Electron &

    Informat Engn Key Lab Optoelect Informat Mat Hebei Prov Baoding 071002 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号