...
首页> 外文期刊>Journal of Materials Chemistry, B. materials for biology and medicine >Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver-sulfur doped graphene quantum dot (Ag@S-GQDs) nanocomposites
【24h】

Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver-sulfur doped graphene quantum dot (Ag@S-GQDs) nanocomposites

机译:银硫掺杂石墨烯量子点(Ag @ S-GQDS)纳米复合材料的协同抗菌活性和细胞活性的合成,表征及研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The excessive use of traditional antibiotic and antibacterial agents has globally increased the growth of antibiotic-resistant bacteria that poses serious health risks. Therefore, the development of new generation antibacterial or antimicrobial agents for effective inhibition of bacterial growth is highly desired. In this study, we report a facile one-step synthesis approach for the preparation of a nanocomposite composed of silver nanoparticles (AgNPs) decorated with sulfur-doped graphene quantum dots (S-GQDs). The nanocomposite was comprehensively characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis absorption spectra, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that the AgNPs were closely and uniformly surrounded by the S-GQDs, and consequently, this ensured the dispersion and stability of the so formed nanocomposite (Ag@S-GQDs). Further, the antibacterial activity of the Ag@S-GQDs nanocomposite was investigated and compared with bare S-GQDs and AgNPs against Gram-positive S. aureus (MTCC 737) and Gram-negative P. aeruginosa (MTCC 424) bacteria using macrodilution and agar well diffusion methods. Minimum inhibitory concentration (MIC) values of 70 and 35 mu g mL(-1) of the Ag@S-GQDs nanocomposite were found to be sufficient to hinder the growth of P. aeruginosa and S. aureus. A fractional inhibition concentration (FIC) index below 0.5 confirmed the existence of a synergistic effect between AgNPs and S-GQDs in the Ag@S-GQDs nanocomposite. In addition, the cytotoxicity of the Ag@S-GQDs nanocomposite, AgNPs and S-GQDs was also investigated using HEK 293 cell lines. Interestingly, the Ag@S-GQDs nanocomposite exhibited superior cell viability as compared to AgNPs and S-GQDs. These improved antibacterial and biocompatibility data demonstrate that the Ag@S-GQDs nanocomposite can serve as a promising antibacterial agent for industry to fabricate next-generation self-sterile textiles, antibacterial coatings and useful health care products supporting cell viability.
机译:过量使用传统的抗生素和抗菌剂在全球增加抗生素抗性细菌的生长,这些细菌造成严重的健康风险。因此,非常需要开发新一代抗菌或抗微生物剂的有效抑制细菌生长。在该研究中,我们报告了用于制备由用硫掺杂石墨烯量子点(S-GQDS)装饰的银纳米颗粒(AgNP)构成的纳米复合材料的容易的一步合成方法。使用透射电子显微镜(TEM),X射线衍射(XRD),UV-Vis吸收光谱,傅里叶变换红外(FTIR)光谱(FTIR)光谱(FTIR光电子谱(X射线光电子谱(XP)全面地表征纳米复合材料。表征结果表明,AgNPS紧密且均匀地被S-GQDS包围,因此,这确保了所形成的纳米复合材料(Ag @ S-GQDS)的分散和稳定性。此外,研究了AG @ S-GQDS纳米复合物的抗菌活性,并与裸S-GQDS和针对革兰氏阳性S.UURES(MTCC 737)和克病·阴性P.铜绿假单胞菌(MTCC 424)细菌的抗菌活性进行比较。琼脂井扩散方法。发现Ag / GQDS纳米复合材料的70和35μg(-1)的最小抑制浓度(MIC)值足以阻碍P.铜绿假单胞菌和金黄色葡萄球菌的生长。分数抑制浓度(FIC)指数低于0.5证实了在Ag @ S-GQDS纳米复合材料中AgNP和S-GQDs之间的协同效应存在。此外,还使用HEK 293细胞系研究了AG @ S-GQDS纳米复合材料,AgNP和S-GQDS的细胞毒性。有趣的是,与AgNP和S-GQD相比,Ag @ S-GQD纳米复合材料表现出优异的细胞活力。这些改进的抗菌和生物相容性数据表明,AG @ S-GQDS纳米复合材料可用作工业的有前途的抗菌剂,用于制造下一代自育纺织品,抗菌涂料和支持细胞活力的有用保健品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号