首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Band edge alignment for tuning interfacial charge transfer: a case study of NaTaO3 as photoelectron platform by anchoring CdTe quantum dots
【24h】

Band edge alignment for tuning interfacial charge transfer: a case study of NaTaO3 as photoelectron platform by anchoring CdTe quantum dots

机译:用于调整界面电荷转移的带边缘对齐:通过锚定CDTE量子点来实现NAAAAN 3作为光电子平台的案例研究

获取原文
获取原文并翻译 | 示例
       

摘要

CdTe quantum dots (QDs) were anchored on NaTaO3 nanocubes with the aim into tuning the charge kinetics for spatial separation of the photogenerated electrons and holes by modifying the relative potential of the conduction band of CdTe QDs. In this work, CdTe QDs (particle size 2-3nm) and NaTaO3 were synthesized via reflux and hydrothermal reaction. Thioglycolic acid (TGA) acted as both a stabilizer and linker molecules during the synthesis of CdTe QDs and NaTaO3/CdTe heterostructure. On accounts of density functional theory (DFT) predictions, electrons can transfer from NaTaO3 to CdTe due to the difference of the Fermi level between two semiconductors, which will establish a built-in electric field at semiconductor interfaces, accelerating the charge separation kinetics between CdTe and NaTaO3. In response, electronic structure tunable CdTe QDs were surface engineered on NaTaO3 nanocubes to enhance the visible light (VL) harvesting capability. By carefully controlling the fine nature of CdTe QDs, photogenerated electrons in CdTe can be efficiently injected into the conduction band of NaTaO3, leading to spatial charge separation between CdTe and NaTaO3. This could be affirmed by applied bias photo to current efficiency (ABPE), incident photocurrent responses as well as electrochemical impedance curves. With well-defined crystallinity, electronic structure, and interfacial contact between NaTaO3 and CdTe, the optimized photocatalytic activity toward hydrogen production over NaTaO3/CdTe heterostructure achieved an evolution rate of 56molg(-1)h(-1), which is far surpassed than that of pristine NaTaO3 and CdTe.
机译:CdTe量子点(QDS)锚定在Natao3纳米孔上,目的是通过改变CDTE QD的传导带的相对电位调节光发化电子和孔的空间分离的电荷动力学。在这项工作中,通过回流和水热反应合成CdTe QDS(粒径2-3nm)和Natao3。在合成CdTe QD和Natao3 / CdTe异质结构期间,硫代醇酸(TGA)作用为稳定剂和接头分子。在密度函数理论(DFT)预测的情况下,由于两个半导体之间的FERMI水平的差异,电子可以从NAAAA13转移到CDTE,这将在半导体界面处建立内置电场,加速CDTE之间的电荷分离动力学和natao3。作为响应,电子结构可调谐CDTE QD在Natao3纳米孔上设计成表面,以增强可见光(VL)收获能力。通过仔细控制CDTE QD的细本,CDTE中的光生电子可以有效地注入NaOAO3的传导中,导致CDTE和NAOA13之间的空间电荷分离。这可以通过将偏置照片应用于电流效率(ABPE),入射光电流反应以及电化学阻抗曲线来肯定。具有明确定义的结晶度,电子结构和Natao3和CdTe之间的界面接触,在Natao3 / CdTe异质结构上的优化光催化活性达到氢气产生,实现了56molg(-1)H(-1)的演化速率,这远远超过原始Natao3和CdTe。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号