...
首页> 外文期刊>Journal of Mathematical Biology >Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model
【24h】

Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model

机译:机械应力调节植物细胞壁刚度:Mescle物理模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A crucial question in developmental biology is how cell growth is coordinated in living tissue to generate complex and reproducible shapes. We address this issue here in plants, where stiff extracellular walls prevent cell migration and morphogenesis mostly results from growth driven by turgor pressure. How cells grow in response to pressure partly depends on the mechanical properties of their walls, which are generally heterogeneous, anisotropic and dynamic. The active control of these properties is therefore a cornerstone of plant morphogenesis. Here, we focus on wall stiffness, which is under the control of both molecular and mechanical signaling. Indeed, in plant tissues, the balance between turgor and cell wall elasticity generates a tissue-wide stress field. Within cells, mechano-sensitive structures, such as cortical microtubules, adapt their behavior accordingly and locally influence cell wall remodeling dynamics. To fully apprehend the properties of this feedback loop, modeling approaches are indispensable. To that end, several modeling tools in the form of virtual tissues have been developed. However, these models often relate mechanical stress and cell wall stiffness in relatively abstract manners, where the molecular specificities of the various actors are not fully captured. In this paper, we propose to refine this approach by including parsimonious biochemical and biomechanical properties of the main molecular actors involved. Through a coarse-grained approach and through finite element simulations, we study the role of stress-sensing microtubules on organ-scale mechanics.
机译:发展生物学的一个关键问题是在活组织中如何协调细胞生长以产生复杂和可重复的形状。我们在植物中解决了这个问题,其中僵硬的细胞外墙防止细胞迁移和形态发生主要是由托耳压力驱动的生长结果。细胞如何响应于压力而增加部分取决于其壁的机械性能,这通常是异质的,各向异性和动态的。因此,对这些性质的活性控制是植物形态发生的基石。在这里,我们专注于壁刚度,这是在分子和机械信号的控制下。实际上,在植物组织中,Turgor和细胞壁弹性之间的平衡产生组织宽的应力场。在细胞内,机械敏感结构,例如皮质微管,相应地适应它们的行为,以及局部影响细胞壁重塑动力学。为了充分逮捕该反馈回路的性质,建模方法是必不可少的。为此,已经开发了一种虚拟组织形式的若干建模工具。然而,这些模型通常以相对抽象的方式涉及机械应力和电池壁刚度,其中不完全捕获各种作用仪的分子特异性。在本文中,我们建议通过包括所涉及的主要分子作用仪的帕思生化和生物力学性能来改善这种方法。通过粗粒化方法和通过有限元模拟,我们研究了应力传感的微管对器官尺度力学的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号