...
首页> 外文期刊>Journal of manufacturing science and engineering: Transactions of the ASME >Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation
【24h】

Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation

机译:使用有限元模拟通过微血管转移电弧工艺建模与预测添加层制造

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Prediction of residual stresses induced by any additive layer manufacturing process greatly helps in preventing thermal cracking and distortion formed in the substrate and deposition material. This paper presents the development of a model for the prediction of residual stresses using three-dimensional finite element simulation (3D-FES) and their experimental validation in a single-track and double-track deposition of Ti-6Al-4V powder on AISI 4130 substrate by the microplasma transferred arc (mu-PTA) powder deposition process. It involved 3D-FES of the temperature distribution and thermal cycles that were validated experimentally using three K-type thermocouples mounted along the deposition direction. Temperature distribution, thermal cycles, and residual stresses are predicted in terms of the mu-PTA process parameters and temperature-dependent properties of substrate and deposition materials. Influence of a number of deposition tracks on the residual stresses is also studied. Results reveal that (i) tensile residual stress is higher at the bonding between the deposition and substrate and attains a minimum value at the midpoint of a deposition track; (ii) maximum tensile residual stress occurs in the substrate material at its interface with deposition track. This primarily causes distortion and thermal cracks; (iii) maximum compressive residual stress occurs approximately at mid-height of the substrate material; and (iv) deposition of a subsequent track relieves tensile residual stress induced by the previously deposited track.
机译:任何添加剂层制造过程引起的残余应力的预测极大地有助于防止在基板和沉积材料中形成的热裂化和变形。本文介绍了使用三维有限元模拟(3D-FES)预测残余应力的模型及其在AISI 4130上的Ti-6Al-4V粉末的单轨和双轨沉积中的实验验证基材通过显微血导弧(MU-PTA)粉末沉积工艺。它涉及使用沿沉积方向安装的三k型热电偶经过实验验证的温度分布和热循环的3D-FE。根据MU-PTA工艺参数和基板和沉积材料的温度依赖性,预测温度分布,热循环和残余应力。还研究了许多沉积轨迹对残余应力的影响。结果表明,(i)沉积和基材之间的键合的拉伸残余应力较高,并在沉积轨道的中点处达到最小值; (ii)在其与沉积轨道的界面处的基底材料中发生最大拉伸残余应力。这主要导致变形和热裂纹; (iii)大致在基材材料的中间高度发生最大压缩残余应力; (iv)后续轨道的沉积可缓解先前沉积的轨道引起的拉伸残余应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号