首页> 外文期刊>Journal of land use science >Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column
【24h】

Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column

机译:旋风静态微泡浮选柱中的流体动力学与分离制度

获取原文
获取原文并翻译 | 示例
       

摘要

A cyclonic-static microbubble flotation column (FCSMC) operates under multiple flow regimes, which significantly improves recovery and selectivity. To understand the flow behavior and separation in an FCSMC, unsteady gas-fluid flow numerical simulations are performed. The computational fluid dynamics model is validated against the particle image velocimetry measurements applied to a lab-scale FCSMC. Hydrodynamic features and qualitative mineralization characteristics are studied. Global analysis reveals that an FCSMC operates under plug flow, swirling flow, and jet and pipe flow regimes along the pulp flow direction, through which the flow velocity, gas holdup, and turbulence gradually increase. This gradual intensification should overcome the mineral's decreased floatability over time. Local hydrodynamic and separation analyses indicate that the gas and liquid in the column unit move axially in opposite directions with very-low velocities, which results in countercurrent collisions, a low recovery capacity and high selectivity. In the cyclone unit, both phases rotate clockwise with high tangential, low radial, and axial velocities. Both axial and radial velocities of the gas and liquid have different magnitudes and opposite directions, which indicates the countercurrent collisions in the axial and radial directions. The density-based separation of tailings and surface flotation of middling takes place in this zone. In the pipe unit, the flow velocity, gas holdup, and turbulence are the highest of the entire FCSMC. Minerals with the lowest floatability are recovered in this zone, but the selectivity is low. Overall, the presence of multiple flow regimes allows the integration of multiple mineralization steps in one column and provides conditions for overcoming the decreased mineral floatability over flotation time, improving both mineralization and selectivity.
机译:旋风 - 静态微泡浮选塔(FCSMC)在多个流动方案下操作,这显着提高了恢复和选择性。为了了解FCSMC中的流动行为和分离,执行不稳定的气体流量数值模拟。计算流体动力学模型验证应用于应用于Lab级FCSMC的粒子图像速度测量测量。研究了流体动力学特征和定性矿化特性。全局分析揭示了FCSMC沿着纸浆流动方向下的堵塞流,旋转流动和喷射和管道流动制度,通过该流量,气体保持和湍流逐渐增加。这种逐步的强化应该克服矿物质的降低随着时间的推移。局部流体动力学和分离分析表明柱单元中的气体和液体沿与极低速度相反的方向轴向移动,这导致逆流碰撞,恢复能力低,选择性低。在旋风单元中,两个相用高切向,低径向和轴向速度顺时针旋转。气体和液体的轴向和径向速度都具有不同的幅度和相反的方向,其表示轴向和径向方向上的逆流碰撞。在该区域发生尾矿和尾翼的尾矿和表面浮选的密度分离。在管道单元中,流速,气体保持和湍流是整个FCSMC中最高的。在该区域中恢复具有最低浮动性的矿物质,但选择性低。总的来说,多个流动制度的存在允许在一列中整合多个矿化步骤,并提供克服浮选时间的降低的矿物质浮动性,从而提高矿化和选择性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号