...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >How Porosity Controls Macroscopic Failure via Propagating Fractures and Percolating Force Chains in Porous Granular Rocks
【24h】

How Porosity Controls Macroscopic Failure via Propagating Fractures and Percolating Force Chains in Porous Granular Rocks

机译:孔隙率如何通过在多孔粒状岩石中传播骨折和渗透力链来控制宏观故障

获取原文
获取原文并翻译 | 示例

摘要

This contribution aims to illuminate the micromechanisms that control the macroscopic failure of porous, granular, and cohesive rocks. With discrete element method simulations, we triaxially compress cohesive granular models composed of interlocking breakable grains, similar to sandstone and oolitic limestone. We track the morphology of the force network and the resulting spatiotemporal fracture distribution. To shed light on the varying applicability of the pore‐emanated and Hertzian fracture models, we focus on differences in the micromechanics that develop between and within grains. For 5-20% porosity rocks, the cement between grains develops 10-50% higher mean forces than material within grains. Force chains that support the highest system‐spanning forces are more localized prior to failure in 20% porosity rocks and are more diffusely spread in 5% porosity rocks. Confining stress reduces this localization, similar to the impact of confining stress on the macroscopic expression of brittle failure. The magnitude and rate of fracture development relative to the axial strain or axial stress increase toward failure, consistent with experimental observations. In contrast, the rate of fracture development relative to the amount of external work done on the system,Wext, is approximately constant. Higher porosity rocks require lower inputs ofWext to produce the same degree of fracturing. Decreasing the cement strength promotes fracture development within the cement, revealing the dominance of intergranular, pore‐emanated fractures. These simulations provide predictions about how porosity controls the persistence of the stress field, with implications on the sequential development of deformation bands, and other deformational processes that modify porosity.
机译:这一贡献旨在照亮控制多孔,颗粒状和粘性岩石的宏观衰竭的微机制。采用离散元素法模拟,我们三轴压缩由互锁可破碎颗粒组成的内聚颗粒模型,类似于砂岩和鲕状石灰石。我们跟踪力网络的形态和由此产生的时空骨折分布。为了阐明孔隙爆炸和赫兹骨折模型的不同适用性,我们专注于在谷物之间和谷物之间发展的微机械的差异。对于5-20%的孔隙率岩石,谷物之间的水泥在晶粒内的材料产生10-50%的平均力。在20%孔隙岩石中发生故障之前,将支持最高系统跨越力的力链更为定位,并且在5%孔隙岩石中更漫长地扩散。限制应力降低了这种本地化,类似于限制应激对脆性衰竭宏观表达的影响。与实验观察结果一致的轴向应变或轴向应力增加的轴向应变或轴向应力增加的幅度和速率。相比之下,骨折开发的速度相对于在系统上完成的外部工作量Wext,是近似恒定的。较高的孔隙率岩石需要较低的灯具输入以产生相同程度的压裂。降低水泥强度促进水泥内的断裂发育,揭示骨髓,孔隙骨折的优势。这些模拟提供了关于孔隙率控制应力场持久性的预测,这对变形带的顺序发展和改变孔隙率的其他变形过程的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号