首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Thermoremanent magnetization of multidomain hematite
【24h】

Thermoremanent magnetization of multidomain hematite

机译:多麦田赤铁矿的热度磁化

获取原文
获取原文并翻译 | 示例
       

摘要

We have studied thermoremanent magnetization (TRM) produced by fields of 10–140 μT in the (0001) basal plane of a 10 × 6 × 2 mm natural single crystal of hematite, both before and after zero-field cycling through the Morin transition at T M = 260 K. Stepwise thermal demagnetization of TRM indicated high-unblocking temperatures between 680°C and the Curie-Néel temperature T N = 690°C. In contrast, TRM was easily demagnetized by alternating fields, TRM intensity decreasing exponentially with increasing field in typical multidomain fashion. The observed 100-μT M TRM is 1.1 kA/m. This strong TRM, almost equal to the saturation remanence, results from hematite's weak internal demagnetizing field. Domain walls move almost unhindered to their limiting positions, and TRM intensity approaches saturation. On cooling through T M, spins rotate to the antiferromagnetic c axis, and hematite's weak ferromagnetism is largely lost. However, on reheating in zero field through T M, as the spins rotate back into the basal plane, a “memory” remanence is regenerated in the original TRM direction. This TRM memory was about 25% of M TRM for our crystal and was even more resistant to thermal demagnetization than the original TRM. The 25% memory of TRM is similar to that of 0.12- to 0.42-μm single-domain hematites. High-unblocking-temperature TRM and TRM memory must be due to magnetoelastic pinning of spins in the basal plane by lattice defects, because both TRM and memory decrease with high-temperature treatment, which anneals out defects. The memory phenomenon seems to be in essence an amplification of residual magnetism that survives below the Morin transition. Remanence produced in a demagnetized sample below T M and room temperature remanence that has been cooled through T M increase in identical ways on warming through the transition. We propose that small regions of canted spins, pinned by crystal defects, remain below T M when the bulk of spins have aligned with the antiferromagnetic c axis. These nuclei serve to regenerate room temperature domain structure and remanence in warming through T M.
机译:我们研究了10×6×2mm天然单晶的(0001)基础平面为10-140μt的赤铁矿的基础晶体,零场循环通过Morin转换之前和之后的(0001)基础平面产生的热度磁化强化(TRM) TM = 260 K. TRM的逐步热退缩化指示在680°C和CUIE-NÉEL温度TN = 690°C之间的高堵塞温度。相反,TRM通过交替的字段容易地解散,TRM强度随着典型多麦田时尚的越来越多的场。观察到的100μtmtrm为1.1ka / m。这种强烈的TRM,几乎等于饱和剩磁,由赤铁矿弱的内部去磁场产生。畴壁几乎不受阻碍地移动到它们的限制位置,并且TRM强度接近饱和度。在冷却到T m时,旋转旋转到反铁磁C轴,并且赤铁矿的弱铁磁性在很大程度上丢失。然而,在通过T m中的零场中再加热时,随着旋转旋转回基平面,在原始TRM方向上再生“存储器”剩磁。对于我们的晶体,该TRM内存约占M TRM的25%,并且比原始TRM更具抗热退磁。 TRM的25%内存类似于0.12至0.42微米的单结构域血液。高解锁温度TRM和TRM记忆必须是由于晶格缺陷在基础面上的旋转磁带钉,因为TRM和记忆均随着高温处理而降低,从而退出缺陷。记忆现象似乎本质上是对残留磁性的放大,其存活在Morin转换之下。在低于T m的退磁样品中产生的剩磁和室温滞留,通过T m冷却,在通过过渡的相同方式增加。我们建议当晶体缺陷的晶体缺陷固定的倾斜旋转的小区域保持在T m以下,当大部分旋转与反铁磁C轴对齐时,保持在T m以下。这些细胞核用于再生室温域结构并剩磁在升温通过T M.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号