首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering
【24h】

Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering

机译:大气和海洋贡献对由小波滤波确定的削减灯泡的兴奋

获取原文
获取原文并翻译 | 示例
       

摘要

Fluctuations of Earth rotation are associated with the redistribution and motion of mass elements in the Earth system. On seasonal to interannual timescales, the largest effects are due to mass redistributions within atmosphere and oceans. In order to study the Earth's reaction on geophysical excitations, the dynamic Earth system model DyMEG has been developed. It is based on the balance of angular momentum in the Earth system. The model is forced by consistent atmospheric and oceanic angular momenta from reanalysis data and a global ocean circulation model. As rotational deformations of the Earth are regarded, forced variations of Earth rotation due to atmospheric and oceanic excitations influence the free polar motion (Chandler wobble) of DyMEG. The comparison of the numerical model results with geodetic observations reveals a good agreement in both the annual and the Chandler frequency band. In order to support the presumption that the excitation energy of atmospheric and oceanic angular momenta within a spectral band around the Chandler frequency is sufficient to reproduce the observed Chandler wobble, the excitation series are band-pass filtered. For consistent filtering and signal analysis, wavelet techniques based on the Morlet function are applied. When DyMEG is forced with the filtered excitations, the resulting polar motion resembles the actually observed Chandler oscillation, which is determined from geodetic observations applying the same filtering method. Between 1980 and 2002 the correlation coefficient between the unconstrained model result and the observed Chandler wobble amounts to 0.99 and the root-mean-square difference is 16 milliarc seconds.
机译:地球旋转的波动与地球系统中质量元素的再分配和运动相关联。在季节性到际时间尺度,最大的效果是由于大气和海洋内的质量再分配。为了研究地球对地球物理激发的反应,开发了动态地球系统模型Dymeg。它基于地球系统中角度的平衡。通过重新分析数据和全球海洋循环模型,通过一致的大气和海洋角动势来强制该模型。由于地球的旋转变形被认为,由于大气和海洋激发导致的地球旋转的强制变化会影响Dymeg的自由极性运动(Chandler Wobble)。与大地测量观测结果的数值模型结果的比较揭示了年度和吊灯频段的良好一致性。为了支持推测,在灯泡频率周围的光谱带内的频谱带内的大气和海洋角度动量的激励能力足以再现观察到的康德勒摆动,激励序列是滤波器过滤。对于一致的滤波和信号分析,应用了基于Morlet函数的小波技术。当使用过滤的激励被迫强制Dymeg时,得到的极性运动类似于实际观察到的康德勒振荡,其由应用相同滤波方法的大地测量观测确定。在1980年和2002之间,不受约束模型结果与观察到的康德勒摆动的相关系数为0.99,根本平均差异为16毫克秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号