...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Fluid-Driven Tensile Fracture and Fracture Toughness in Nash Point Shale at Elevated Pressure
【24h】

Fluid-Driven Tensile Fracture and Fracture Toughness in Nash Point Shale at Elevated Pressure

机译:升高压力下纳什点页岩中的流体驱动的拉伸裂缝和断裂韧性

获取原文
获取原文并翻译 | 示例
           

摘要

A number of key processes, both natural and anthropogenic, involve the fracture of rocks subjected to tensile stress, including vein growth and mineralization, and the extraction of hydrocarbons through hydraulic fracturing. In each case, the fundamental material property of mode-I fracture toughness must be overcome in order for a tensile fracture to propagate. While measuring this parameter is relatively straightfonvard at ambient pressure, estimating fracture toughness of rocks at depth, where they experience confining pressure, is technically challenging. Here we report a new analysis that combines results from thick-walled cylinder burst tests with quantitative acoustic emission to estimate the mode-I fracture toughness (K-IC) of Nash Point Shale at confining pressure simulating in situ conditions to approximately 1-km depth. In the most favorable orientation, the pressure required to fracture the rock shell (injection pressure, P-inj) increases from 6.1 MPa at 2.2-MPa confining pressure (P-c), to 34 MPa at 20-MPa confining pressure. When fractures are forced to cross the shale bedding, the required injection pressures are 30.3 MPa (at P-c = 4.5 MPa) and 58 MPa (P-c= 20 MPa), respectively. Applying the model of Abou-Sayed et al. (1978, https://doi.org/10.1029/JB083iB06p02851) to estimate the initial flaw size, we calculate that this pressure increase equates to an increase in K-IC from 0.36 to 4.05 MPa.m(1/2) as differential fluid pressure (P-inj - P-c) increases from 3.2 to 22.0 MPa. We conclude that the increasing pressure due to depth in the Earth will have a significant influence on fracture toughness, which is also a function of the inherent anisotropy.
机译:天然和人为的许多关键过程涉及经受拉伸应力的岩石的骨折,包括静脉生长和矿化,通过液压压裂提取烃。在每种情况下,必须克服模式-I断裂韧性的基本材料性质,以便抗拉伸骨折繁殖。在测量该参数时,在环境压力下相对直观,估计深度岩石的断裂韧性,在那里遇到限制压力,在技术上是具有挑战性的。在这里,我们报告了一个新的分析,将厚壁气缸突发测试的结果与定量声学发射相结合,以估计纳什点页岩的模式-I断裂韧性(K-IC)在狭窄的压力下模拟到大约1公里的深度。在最有利的方向上,将岩石壳(注射压力,P-Rec)裂缝所需的压力从2.2MPa限制压力(P-C)的6.1MPa增加到20MPa限制压力的34MPa。当裂缝被迫穿过页岩垫层时,所需的注射压力分别为30.3MPa(P-C = 4.5MPa)和58MPa(P-C = 20MPa)。应用abou-sayed等人的模型。 (1978,https://do.org/10.1029/jb083ib06p02851)估计初始缺陷尺寸,我们计算该压力增加等于k-ic的增加,从0.36到4.05 mpa.m(1/2)为差分流体压力(P-Inj - PC)从3.2增加到22.0MPa。我们得出结论,由于地球深度导致的增加压力会对裂缝韧性产生显着影响,这也是固有各向异性的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号