首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization
【24h】

Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization

机译:俯冲界面的弱化及其对表面热流,板坯脱水和地幔楔形蛇形化的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The shallow part of the interface between the subducting slab and the overriding mantle wedge is evidently weakened by the presence of hydrous minerals and high fluid pressure. We use a two-dimensional finite element model, with a thin layer of uniform viscosity along the slab surface to represent the strength of the interface and a dislocation-creep rheology for the mantle wedge, to investigate the effect of this interface “decoupling.” Decoupling occurs when the temperature-dependent viscous strength of the mantle wedge is greater than that of the interface layer. We find that the maximum depth of decoupling is the key to most primary thermal and petrological processes in subduction zone forearcs. The forearc mantle wedge above a weakened subduction interface always becomes stagnant (<0.2% slab velocity), providing a stable thermal environment for the formation of serpentinite. The degree of mantle wedge serpentinization depends on the availability of aqueous fluids from slab dehydration. A very young and warm slab releases most of its bound H2O in the forearc, leading to a high degree of mantle wedge serpentinization. A very old and cold slab retains most of its H2O until farther landward, leading to a lower degree of serpentinization. Our preferred model for northern Cascadia has a maximum decoupling depth of about 70–80 km, which provides a good fit to surface heat flow data, predicts conditions for a high degree of serpentinization of the forearc mantle wedge, and is consistent with the observed shallow intraslab seismicity and low volume of arc volcanism.
机译:通过含水矿物质和高流体压力,显然削弱了底板板和覆盖罩楔之间的界面的浅部分。我们使用二维有限元模型,沿着平板表面的薄层均匀粘度,以表示界面的强度和用于地幔楔的脱离蠕变流变学,研究该界面的效果“去耦”。当Mantle楔的温度依赖性粘性强度大于界面层的温度依赖性粘性强度时发生去耦。我们发现,最大脱耦深度是俯冲区前臂中大多数主要热和岩石工艺的关键。前臂搭桥楔于弱化的俯冲界面总是变得停滞(<0.2%的板坯速度),为形成蛇形镁矿提供稳定的热环境。地幔楔形态肽的程度取决于从板坯脱水的水性流体的可用性。一个非常年轻和温暖的板坯在前臂中释放了大部分H2O,导致高度的搭式楔形蛇形化。一个非常古老而冷的板坯保持大部分H2O,直到进一步的陆地,导致六种蛇纹化程度较低。我们的北部Cascadia的首选模型具有约70-80 km的最大去耦深度,提供了良好的表面热流数据,预测了前臂地幔楔的高度蛇形化的条件,并且与观察到的浅层一致intraslab地震性和低量的弧形火山。

著录项

  • 来源
  • 作者单位

    School of Earth and Ocean Sciences University of Victoria Victoria British Columbia Canada;

    School of Earth and Ocean Sciences University of Victoria Victoria British Columbia Canada;

    School of Earth and Ocean Sciences University of Victoria Victoria British Columbia Canada;

    School of Earth and Ocean Sciences University of Victoria Victoria British Columbia Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

  • 入库时间 2022-08-20 09:24:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号