首页> 外文期刊>Journal of geophysical research. Earth Surface: JGR >Impacts of the Cryosphere and Atmosphere on Observed Microseisms Generated in the Southern Ocean
【24h】

Impacts of the Cryosphere and Atmosphere on Observed Microseisms Generated in the Southern Ocean

机译:冰冷圈和大气对南海洋生成的观察微痉挛的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The Southern Ocean (in the region 60-180 degrees E) south of the Indian Ocean, Australia, and the West Pacific is noted for the frequent occurrence and severity of its storms. These storms give rise to high-amplitude secondary microseisms from sources, including the deep ocean regions, and primary microseisms where the swells impinge on submarine topographic features. A better understanding of the varying microseism wavefield enables improvements to seismic imaging and development of proxy observables to complement sparse in situ wave observations and hindcast models of the global ocean wave climate. We analyze 12-26 years of seismic data from 11 seismic stations either on the East Antarctic coast or sited in the Indian Ocean, Australia, and New Zealand. The power spectral density of the seismic wavefield is calculated to explore how the time-changing microseism intensity varies with (i) sea ice coverage surrounding Antarctica and (ii) the Southern Annular Mode (SAM) climate index. Variations in sea ice extent are found to be the dominant control on the microseism intensity at Antarctic stations, which exhibit a seasonal pattern phase-shifted by 4-5 months compared to stations in other continents. Peaks in extremal intensity at East Antarctic stations occur in March-April, with the highest peaks for secondary microseisms occurring during negative SAM events. This relationship between microseism intensity and the SAM index is opposite to that observed on the Antarctic Peninsula. This work informs the complexity of microseism amplitudes in the Southern Hemisphere and assists ongoing interdisciplinary investigations of interannual variability and long-term trends.
机译:南海(在印度洋,澳大利亚和西太平洋南部的南海(在60-180摄氏度e)中,常常发生和严重程度的情况下指出。这些风暴引起来自来源的高幅度二次微痉挛,包括深海地区,以及膨胀在潜艇地形特征上的原发性微痉挛。更好地理解改变的微震波场,可以改善地震成像和代理观察的发展,以补充稀疏的原位波观测和全球海浪气候的Hindcast模型。我们在东南南极海岸或在印度洋,澳大利亚和新西兰分析来自11个地震站的12-26多年的地震数据。计算地震波场的功率谱密度,以探讨时变的微痉挛强度如何随(i)南极和(ii)南方环形模式(SAM)气候指数的海冰覆盖而变化。发现海冰范围的变化是对南极站的微痉挛强度的主导控制,与其他大洲的站点相比,在4-5个月的季节性模式上表现出季节性模式。东南南极站的极端强度的峰在3月至4月出现,在负SAM事件期间发生最高的次级微痉挛峰。微痉挛强度与SAM指数之间的这种关系与在南极半岛观察到的关系相反。这项工作通知南半球微震幅度的复杂性,并协助持续的跨学科调查年间可变性和长期趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号