首页> 外文期刊>Journal of Electromagnetic Waves and Applications >Design of a high gain and high efficiency W-band folded waveguide TWT using phase-velocity taper
【24h】

Design of a high gain and high efficiency W-band folded waveguide TWT using phase-velocity taper

机译:使用相位速度锥度设计高增益和高效W波段折叠波导TWT

获取原文
获取原文并翻译 | 示例
           

摘要

The folded-waveguide (FW) slow-wave structure (SWS) is a very promising beam-wave interaction circuit for high-frequency traveling wave tubes (TWTs). This paper presents the design methodology for enhancing the gain and efficiency of a practical W-band FWTWT using phase-velocity taper. Initially, phase-velocity, interaction impedance, and gain-growth of a single-section FWTWT are predicted theoretically. Further, these parameters are optimized using the eigenmode solver and transient solver of 3-D CST Studio. The simulated results agreed with theoretically predicted results within similar to 1% discrepancy. Then the single-section SWS along with the input and output couplers consisting of quarter-wave impedance transformers and pillbox windows are simulated using transient solver and a return-loss of around -20dB is obtained over the desired band. Finally, the output power, gain and electronic efficiency for a two-section TWT with the phase-velocity taper are obtained using particle-in-cell simulation of CST Studio. At an applied beam voltage of 20kV and a current of 0.1 A, an output power of 130W, corresponding to a saturated gain of 39.4dB, an instantaneous 3-dB bandwidth of around 5.3%, and electronic efficiency of around 6.5% at 94GHz has been obtained. It was found that at 94GHz the positively and negatively phase-velocity tapered' sections enhanced the gain by almost 3dB and doubles the electronic efficiency of the two-section FWTWT design as compared to the two-section FWSWS with the same interaction circuit length with no phase-velocity taper.
机译:折叠波导(FW)慢波结构(SWS)是用于高频行驶波管(TWO)的非常有前景的光束波相互作用电路。本文介绍了使用相位速度锥度提高实用的W波段FWTWT的增益和效率的设计方法。从理论上预测,最初,相速度,相互作用阻抗和单段FWTWT的增益增长。此外,使用3-D CST工作室的EigenMode求解器和瞬态求解器进行优化这些参数。模拟结果同意理论上预测的结果类似于1%的差异。然后,使用瞬态求解器模拟由四分之一波阻抗变压器和支柱窗口组成的输入和输出耦合器,并在所需的频段上获得左右-20dB的回波损耗。最后,使用CST工作室的粒子仿真获得了具有相位速度锥度的两部分TWT的输出功率,增益和电子效率。在20kV的施加光束电压下,电流为0.1a,输出功率为130W,对应于39.4dB的饱和增益,瞬时3-DB带宽约为5.3%,而94GHz的电子效率约为6.5%。获得。发现,在94GHz,正极和负相相位速锥形截面部分,与具有相同交互电路长度的两截面FWSW相比,两截面FWTWT设计的电子效率增加了几乎3DB的增益。相速度锥度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号