...
首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >How Computational Grid Refinement in Three Dimensions Affects Computational Fluid Dynamics-Discrete Element Method Results for Psuedo-Two-Dimensional Fluidized Gas-Solid Beds
【24h】

How Computational Grid Refinement in Three Dimensions Affects Computational Fluid Dynamics-Discrete Element Method Results for Psuedo-Two-Dimensional Fluidized Gas-Solid Beds

机译:三维计算网格改进如何影响PSUEDO二维流化气体固体床的计算流体动力学 - 离散元件方法结果

获取原文
获取原文并翻译 | 示例
           

摘要

Computational fluid dynamics (CFD)-discrete element method (DEM) simulations are designed to model a pseudo-two-dimensional (2D) fluidized bed, in which bed thickness is minimal compared to height and length. Predicted bed behavior varies as the simulations are conducted on increasingly refined computational grids. Pseudo-2D simulation results, in which a single computational cell spans the bed thickness, are compared against fully-three-dimensional (3D) simulations results. Both pseudo-2D and fully-3D simulations exhibit high accuracy when sufficiently refined. Indicators of bed behavior, such as bed height, bed height fluctuation, bubble generation frequency, and segregation, do not appear to converge as the cell size is reduced. The Koch-Hill and Gidaspow drag laws are alternately employed in the simulations, resulting in different trends of results with computational grid refinement. Grid refinement studies are used to quantify the change in results with grid refinement for both three-dimensional, uniform refinement, and for two-dimensional refinement on pseudo-2D computational grids. Grid refinement study results indicate the total drag converges as the computational grid is refined, for both 3D and pseudo-2D approaches. The grid refinement study results are also used to distinguish the relatively grid-independent results using the Koch-Hill drag law from the highly grid-dependent Gidaspow drag law results. Computational cell size has a significant impact on CFD-DEM results for fluidized beds, but the grid refinement study method can be used to quantify the resulting numerical error.
机译:计算流体动力学(CFD) - 模拟元件方法(DEM)模拟设计为模拟伪二维(2D)流化床,其中床厚度与高度和长度相比最小。预测的床行为随着在越来越精细的计算网格上进行的模拟而变化。伪2D仿真结果,其中单个计算单元跨越床厚度,与全三维(3D)模拟结果进行比较。 PSEUDO-2D和完全3D模拟均在充分精炼时表现出高精度。床行为的指标,如床高,床高度波动,泡沫发电频率和隔离,不要随着细胞尺寸减少而收敛。 Koch-hill和Gidaspow拖累法在模拟中使用,导致计算网格精制的结果不同。网格细化研究用于量化与网格精制的结果的变化,用于三维,统一的细化,以及对伪2D计算网格的二维改进。网格细化研究结果表明,随着计算网格被精制的总阻力,适用于3D和伪2D方法。网格细化研究结果也用于使用高速公路依赖的GIDASPOW拖累法结果使用Koch-Hill拖累法将相对电网独立的结果区分开来。计算单元尺寸对流化床的CFD-DEM结果产生了显着影响,但电网细化研究方法可用于量化所产生的数值误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号