...
首页> 外文期刊>Journal of Fluids and Structures >High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil
【24h】

High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil

机译:3-D水翼的高保真多点热结构优化

获取原文
获取原文并翻译 | 示例
           

摘要

The design optimization of flexible hydrofoils and propellers requires coupled hydrodynamic and structural analysis to achieve truly optimal, physically realizable, and structurally sound designs. To address this need, we develop an efficient high-fidelity hydrostructural design optimization approach that can handle large numbers of design variables, multiple design points, as well as design constraints on cavitation, maximum von Mises stress, and manufacturing tolerances. The hydrostructural solver couples a 3-D nearly incompressible Reynolds-averaged Navier-Stokes solver with a 3-D structural finite-element solver. We validate the solver by comparing the hydrodynamic load coefficients and tip bending deformations of a cantilevered aluminum alloy hydrofoil with a NACA 0009 cross section and a trapezoidal planform. We use a coupled adjoint approach for efficient computation of the performance and constraint function derivatives with respect to 210 shape design variables. A single-point hydrostructural optimization of the NACA 0009 baseline hydrofoil yields a 12.4% increase in lift-to-drag ratio, a 2.5% reduction in mass, and a 45% increase in the cavitation inception speed. However, the performance of the single-point optimized hydrofoil is found to be worse than the baseline at off-design conditions. On the other hand, a multipoint optimization yields improved performance over the entire range of expected operating conditions with a weighted average increase in lift-to-drag ratio of 8.5%, and an increased cavitation inception speed of 38%. We compare the hydrostructural optimal result to an equivalent hydrodynamic-only optimization, and we show that only the hydrostructural optimized design satisfies the stress constraint up to the highest expected loading condition, highlighting the need for coupled hydrostructural optimization. The proposed approach enables multipoint optimization of hydrodynamic performance for hydrofoils and marine propulsors with respect to detailed shape while enforcing design constraints. This constitutes a powerful new tool for improving existing designs, and exploring new concepts. (C) 2017 Elsevier Ltd. All rights reserved.
机译:柔性水翼和螺旋桨的设计优化需要耦合的流体动力和结构分析,实现真正的最佳,物理可实现和结构性的声音设计。为了解决这一需求,我们开发了一种高效的高保真利用软件结构设计优化方法,可以处理大量的设计变量,多种设计点,以及对空化,最大von误解压力和制造公差的设计约束。水泥系统求解器将3-D几乎不可压缩的雷诺平均纳维尔 - Stokes求解器与三维结构有限元件求解器耦合。我们通过将悬臂式铝合金水翼罐的流体动力负载系数和尖端弯曲变形与NaCa 0009横截面和梯形平面变化来验证求解器。我们使用耦合伴随方法来实现关于210形状设计变量的性能和约束函数衍生物的有效计算。 NACA 0009基线水膜的单点水溶性优化产生12.4%的剥离比率,质量减少2.5%,气化成立速度增加45%。然而,发现单点优化水翼的性能比在非设计条件下的基线更差。另一方面,多点优化在整个预期运行条件范围内产生改善的性能,其加权平均增加的升力比率为8.5%,并且空化成立速度增加38%。我们将水能最佳结果与唯一的纯度优化进行比较,我们表明,只有热结构的优化设计使压力约束满足到最高预期的负载条件,突出了耦合的热结构优化的需求。所提出的方法能够在实施设计限制的同时,能够对水翼和船舶推进器进行多点优化水翼和船舶推进器的流体动力学性能。这构成了一种改进现有设计的强大新工具,并探索新概念。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号