...
首页> 外文期刊>Journal of Fluids and Structures >Reduced order nonlinear aeroelasticity of swept composite wings using compressible indicial unsteady aerodynamics
【24h】

Reduced order nonlinear aeroelasticity of swept composite wings using compressible indicial unsteady aerodynamics

机译:使用压缩指标不稳定空气动力学减少扫井复合翅膀的订单非线性空气弹性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nonlinear dynamic aeroelasticity of composite wings in compressible flows is investigated. To provide a reasonable model for the problem, the composite wing is modeled as a thin walled beam (TWB) with circumferentially asymmetric stiffness layup configuration. The structural model considers nonlinear strain displacement relations and a number of non-classical effects, such as transverse shear and warping inhibition. Geometrically nonlinear terms of up to third order are retained in the formulation. Unsteady aerodynamic loads are calculated according to a compressible model, described by indicial function approximations in the time domain. The aeroelastic system of equations is augmented by the differential equations governing the aerodynamics lag states to derive the final explicit form of the coupled fluid-structure equations of motion. The final nonlinear governing aeroelastic system of equations is solved using the eigenvectors of the linear structural equations of motion to approximate the spatial variation of the corresponding degrees of freedom in the Ritz solution method. Direct time integrations of the nonlinear equations of motion representing the full aeroelastic system are conducted using the well-known Runge-Kutta method. A comprehensive insight is provided over the effect of parameters such as the lamination fiber angle and the sweep angle on the stability margins and the limit cycle oscillation behavior of the system. Integration of the interpolation method employed for the evaluation of compressible indicial functions at any Mach number in the subsonic compressible range to the derivation process of the third order nonlinear aeroelastic system of equations based on TWB theory is done for the first time. Results show that flutter speeds obtained by the incompressible unsteady aerodynamics are not conservative and as the backward sweep angle of the wing is increased, post-flutter aeroelastic response of the wing becomes more well-behaved. (C) 2019 Elsevier Ltd. All rights reserved.
机译:研究了可压缩流动中复合翼的非线性动态空气弹性。为了提供一个用于问题的合理模型,复合机翼被建模为薄壁梁(TWB),其具有周向不对称的刚度叠层配置。结构模型考虑非线性应变位移关系和许多非古典效果,例如横向剪切和翘曲抑制。在制剂中保留了最多第三顺序的几何非线性条款。根据可压缩模型计算不稳定的空气动力载荷,通过时域中的标记函数近似描述。通过控制空气动力学滞后状态的微分方程来增强方程的空气弹性体系,以推导出耦合的流体结构方程的最终明确形式。使用运动的线性结构方程的特征向量来解决方程的最终非线性气孔系统,以近似RITZ溶液方法中对应的相应自由度的空间变化。使用众所周知的跑步-Kutta方法进行代表完整空气弹性系统的运动的非线性方程的直接时间集成。在稳定边缘上的扫描光纤角度和扫描角度之类的参数效果和系统的极限周期振荡行为上提供了全面的洞察。第一次完成用于评估基于TWB理论的第三阶非线性空气弹性系统的阶段可压缩范围中的任何Mach数的间隔方法的插值方法。结果表明,通过不可压缩的不稳定空气动力学获得的颤动速度不是保守的并且随着机翼的后扫角度增加,机翼的后颤动空气弹性响应变得更加良好。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号