...
首页> 外文期刊>Journal of Experimental Botany >Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine
【24h】

Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine

机译:葡萄浆果中的多元醇:运输和代谢调整作为葡萄葡萄树水缺陷应力耐受性的生理策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H+-dependent plasma membrane carrier transports mannitol (K-m=5.4 mM) and sorbitol (K-m=9.5 mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K-m=30.1 mM mannitol) and mature berry mesocarps (K-m=79 mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches.
机译:多元醇是重要的代谢产物,其通常用作一些植物中的碳和能源和/或Osmophotective溶质。在葡萄树中,特别是在葡萄浆果中,迄今为止,多元醇转运和代谢的分子方面及其生理相关性。这里,在酵母中的异源表达之后,表征葡萄树果实Mesocarp多元醇转运蛋白(VVPLT1)的生物化学功能。该H +依赖性血浆膜载体在广泛的多元醇和单糖上将甘露醇(K-M = 5.4mm)和山梨糖醇(K-M = 9.5mm)转运。水缺陷应力引发了完全成熟阶段的VVPLT1表达的增加,允许将多元醇摄取到纸浆细胞中。植物多元醇脱氢酶是氧化酶,其可逆地将多元醇氧化成单糖。甘尼尔分解代谢在葡萄细胞(K-M = 30.1mM甘露醇)和成熟的浆果Mesocarps(K-M = 79mm),如山梨糖醇脱氢酶活性,通过水缺陷应力强烈抑制(50-75%)。同时,通过甘露醇和山梨糖醇脱氢酶促进果糖还原到多元醇,促进其较高的水 - 缺陷胁迫细胞内浓度。因此,来自水缺陷的紫外线葡萄园的Berry Mesocarps,甘露醇,山梨糖醇,半乳糖醇,肌肌醇和抗芸盐和抗芸盐的浓度显着高。 GC-TOF-MS的Berry纸浆的代谢物分析还揭示了通过水缺损诱导的组合物的许多其他变化。通过将代谢组科与转录分析和生化方法相容,通过将代谢组分析与转录分析和生物化学方法相结合来分析多元醇对水缺损应力的影响和植物对水缺陷应力的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号