...
首页> 外文期刊>Journal of Controlled Release: Official Journal of the Controlled Release Society >A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer
【24h】

A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer

机译:一种简单的被动平衡方法,用于将卡铂加载到与乙醇孵育的预形成脂质体中作为温度依赖性渗透性增强剂

获取原文
获取原文并翻译 | 示例
           

摘要

A passive equilibrationmethodwhich relies on addition of candidate drugs to pre-formed liposomes is described as an alternativemethod for preparing liposome encapsulated drugs. The method is simple, rapid and applicable to liposomes prepared with high (45 mol%) or low (<20 mol%) levels of cholesterol. Passive equilibration is performed in 4-steps: (i) formation of liposomes, (ii) addition of the candidate drug to the liposomes in combination with a permeability enhancing agent, (iii) incubation at a temperature that facilitates diffusion of the added compound across the lipid bilayer, and (iv) quenching the enhancedmembrane permeability by reduction in temperature and/or removal of the permeabilization enhancer. Themethod is fully exemplified here using ethanol as the permeabilization enhancer and carboplatin (CBDCA) as the drug candidate. It is demonstrated that ethanol can be added to liposomes prepared with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and Cholesterol (Chol) (55: 45 mol ratio) in amounts up to 30% (v/v) with no change in liposome size, even when incubated at temperatures > 60 degrees C. Super-saturated solutions of CBDCA (40 mg/mL) can be prepared at 70 degrees C and these are stable in the presence of ethanol even when the temperature is reduced to <30 degrees C. maximum CBDCA encapsulation is achieved within 1 h after the CBDCA solution is added to pre-formed DSPC/Chol liposomes in the presence of 30% (v/v) ethanol at 60 degrees C. When the pre-formed liposomes are mixed with ethanol (30% v/v) at or below 40 degrees C, the encapsulation efficiency is reduced by an order of magnitude. The method was also applied to liposomes prepared from other compositions include a cholesterol free formulations (containing 1,2-distearoyl-snglycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)-2000] (DSPE-PEG2000)) and a low Chol (<20 mol%) formulations prepared with the distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) DSPG)). The cytotoxic activity of CBDCA was unaffected when prepared in this manner and two of the resultant formulations exhibited good stability in vitro and in vivo. The cytotoxic activity of CBDCA was unaffected when prepared in this manner and the resultant formulations exhibited good stability in vitro and in vivo. Pharmacokinetics studies in CD-1 mice indicated that the resulting formulations increased the circulation half life of the associated CBDCA significantly (AUC0-24 h of CBDCA = 0.016 mu g . hr/mL; AUC(0-24h) of the DSPC/Chol CBDCA formulation = 1014.0 mu g . hr/mL and AUC0-24h of the DSPC/DSPG/Chol CBDCA formulation= 583.96 mu g . hr/mL). Preliminary efficacy studies in Rag-2M mice with established subcutaneous H1975 and U-251 tumors suggest that the therapeutic activity of CBDCA is improved when administered in liposomal formulations. The encapsulation method described here has not been disclosed previously and will have broad applications to drugs that would normally be encapsulated during liposome manufacturing. (C) 2017 The Authors. Published by Elsevier B. V.
机译:将依赖于将候选药物添加到预形成的脂质体上的被动平衡均匀被描述为制备脂质体包封的药物的交替乙二醇。该方法简单,快速,适用于具有高(45mol%)或低(<20mol%)胆固醇的胆固醇的脂质体。被动平衡以4步进行:(i)脂质体的形成,(ii)将候选药物添加到脂质体中,与渗透性增强剂,(iii)在促进添加的化合物扩散的温度下孵育通过降低温度和/或去除渗透增强剂,脂质双层和(IV)淬灭增强型透过率。这里使用乙醇作为药物候选者作为渗透增强剂和卡铂(CBDCA)完全举例地列举了Histhod。证明,乙醇可以加入用1,2- distearoyl-sn-甘油-3-普米基啉(dspc)和胆固醇(= 55:45mol比)的脂质体,其量高达30%(v / v )脂质体大小没有变化,即使在温度下孵育> 60℃。可以在70℃下制备CBDCA(40mg / ml)的超饱和溶液,即使当温度时,这些也在乙醇存在下稳定在将CBDCA溶液加入到预形成的DSPC / Chol脂质体中在30%(v / v)乙醇的情况下在60℃下在60℃下将最大CBDCA包封降低到<30℃。 - 在40℃或低于40℃的乙醇(30%v / v)中混合形成脂质体,封装效率减小了幅度。该方法还应用于由其他组合物制备的脂质体,包括胆固醇的游离制剂(含有1,2- Distearoyl-Snglycero-3-磷乙醇胺-N- [羧基(聚乙二醇)-2000](DSPE-PEG2000))和低霍乱(<20mol%)用Distearoyl-Sn-甘油-3-磷酸 - (1'- RAC-甘油)DSPG制备的制剂)。当以这种方式制备时,CBDCA的细胞毒性活性不受影响,并且其两种所得制剂在体外和体内表现出良好的稳定性。当以这种方式制备时,CBDCA的细胞毒性活性未受影响,并且所得制剂在体外和体内表现出良好的稳定性。 CD-1小鼠的药代动力学研究表明,所得制剂显着增加了相关CBDCA的循环半衰期(CBDCA的AUC0-24 H =0.016μg.HR / ml; AUC(0-24H)的DSPC / CHOL CBDCA配方=1014.0μg。DSPC / DSPG / CHOL CBDCA配方的HR / mL和AUC0-24H =583.96μg.Hr / ml)。具有成立皮下H1975和U-251肿瘤的RAG-2M小鼠中的初步疗效研究表明,在脂质体制件中施用时,CBDCA的治疗活性得到改善。此处描述的包封方法尚未公开,并且将具有广泛的应用通常在脂质体制造期间包封的药物。 (c)2017作者。由Elsevier B. V.发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号