...
首页> 外文期刊>Journal of Catalysis >Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine-disrupting chemicals under visible light
【24h】

Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine-disrupting chemicals under visible light

机译:支持的金簇是可见光下的内分泌破坏化学品的有效和可重复使用的光催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Photocatalysts based on glutathione-protected Au clusters (1.5 +/- 0.4 nm) were synthesized and assessed for the visible-light degradation of ten different endocrine-disrupting chemicals (EDCs) and related compounds. In its as-prepared form, the Au clusters undergo rapid photocharge recombination resulting in no appreciable photocatalytic activity. Coupling with non-activated TiO2 acceptor was necessary to achieve efficient interfacial charge separation that allowed the photocharges on the Au clusters to be effectively harvested for surface redox reactions. Under visible light excitation, the Au cluster undergoes ligand-to-metal charge transfer and resulting in the accumulation of photohole on the glutathione ligand (i.e., the HOMO state). The transfer of photoholes to the hydrogen-bonded EDCs is identified as the main oxidation pathway. The hole transfer oxidation, which was probably complemented by superoxide radicals attack, was necessary since the low HOMO level of the Au clusters (+1.21 V vs. RHE, pH 0) disallowed the production of hydroxyl radicals (+2.68 V vs. RHE, pH 0). As such, the photocatalytic degradation rates of EDCs are in accordance with the trend of Langmuir adsorption capacities. Lastly, we demonstrated the high reusability of the Au cluster/TiO2 photocatalyst, retaining 96% of the initial activity even after 5 repeated cycles or equivalent to 25 h of continuous irradiation. (C) 2017 Elsevier Inc. All rights reserved.
机译:基于谷胱甘肽保护的Au簇(1.5 +/- 0.4nm)的光催化剂被合成并评估了十种不同内分泌破坏化学品(EDC)和相关化合物的可见光降解。在其作为制定的形式中,Au簇经过快速的光充电重组,导致没有可明显的光催化活性。与未激活的TiO2受体的偶联是为了获得有效的界面电荷分离,使得允许在Au簇上的光火炬进行有效收获表面氧化还原反应。在可见光激发下,Au簇经历配体 - 金属电荷转移,并导致谷胱甘肽配体(即HOMO状态)上的光孔积累。将光孔转移到氢键的EDC中被鉴定为主要氧化途径。由于Au簇的低同质水平(+1.21V与rhe,pH 0)不允许生产羟基自由基(+2.68V与rhe,以来,可能互动的空穴转移氧化是必需的pH 0)。因此,EDC的光催化降解率符合Langmuir吸附能力的趋势。最后,我们证明了Au簇/ TiO2光催化剂的高可重用性,即使在5个重复循环或相当于25小时的连续照射后,也保持96%的初始活性。 (c)2017年Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Journal of Catalysis》 |2017年第2017期|共12页
  • 作者单位

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

    Texas A&

    M Univ Zachry Dept Civil Engn Environm Water Resources &

    Coastal Engn Div College Stn TX USA;

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

    Texas A&

    M Univ Zachry Dept Civil Engn Environm Water Resources &

    Coastal Engn Div College Stn TX USA;

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

    City Univ Hong Kong Sch Energy &

    Environm Joint Lab Energy &

    Environm Catalysis Clean Energy &

    Nanotechnol CLEAN Lab Kowloon Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 催化;
  • 关键词

    Gold clusters; Photocatalysis; TiO2; Visible light; Endocrine disruptors; Environmental remediation;

    机译:金簇;光催化;TiO2;可见光;内分泌干扰者;环境修复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号