首页> 外文期刊>Journal of CO2 Utilization >Stress state and stress path evaluation to address uncertainties in reservoir rock failure in CO2 sequestration in deep saline aquifers: An experimental study of the Hawkesbury sandstone formation
【24h】

Stress state and stress path evaluation to address uncertainties in reservoir rock failure in CO2 sequestration in deep saline aquifers: An experimental study of the Hawkesbury sandstone formation

机译:应力状态和应力路径评价在深盐含水层CO2封存中解决水库岩石破坏的不确定性:霍克斯伯里砂岩形成的实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

Injecting CO2 into aquifer pore fluid (high salinity brine) in deep saline aquifers during the sequestration process causes the chemico-mineral structure to be altered through complex chemically-coupled mechanical deformations. This is as yet poorly understood in the field. The authors conducted a series of tri-axial strength tests on Hawkesbury sandstone under in-situ stress and temperature conditions to characterise the behaviour of reservoir rock upon exposure to super-critical CO2 (ScCO2) to determine this chemically-coupled mechanical behaviour. According to the findings, injection of CO2 into a brine-saturated reservoir rock mass may cause a considerable strength reduction, probably due to the rock's mineralogical alteration-induced mechanical weakening of grain contacts. This was confirmed by SEM analysis, according to which the mineral dissolution process upon exposure to ScCO2 is significant, and considerable quartz and calcite dissolution were noticed in the tested samples. Importantly, this rock mineral dissolution may alter the reservoir's natural pore geometry. This eventually affects the effective stress patterns acting on the rock matrix. In addition, the slip tendency of brine + CO2-reacted reservoir rock is increased with increasing injection pressure, revealing the fate of the resulting pore pressure-dominant effective stress field through the CO2 injection process. The results were then incorporated in the effective stress field model. This model can be used to predict the possibility of mechanical failure of reservoir rock upon CO2 injection into saline aquifers.
机译:在封存过程中将CO2注入含水层进入含水层孔隙流体(高盐度盐水),导致Chemico-矿物结构通过复杂的化学耦合的机械变形而改变。这是在该领域理解的尚未理解。作者在原位应力和温度条件下对Hawkesbury砂岩进行了一系列三轴强度试验,以表征水库岩石在暴露于超关键二氧化碳(SCCO2)时的行为,以确定这种化学耦合的机械行为。根据调查结果,将CO2注入盐水饱和储层岩体可能导致相当大的减少,可能是由于岩石的矿物学改变诱导的晶粒触点的机械弱化。通过SEM分析证实了这一点,根据该SEM分析,在暴露于SCCO 2时,矿物溶解过程是显着的,并且在测试的样品中发现了相当大的石英和方解石溶解。重要的是,这种岩石矿物溶解可能会改变储层的天然孔隙几何形状。这最终影响作用在岩石基质上的有效应力模式。此外,随着注射压力的增加,盐水+二氧化碳反应储存器岩石的滑移趋势增加,通过CO 2喷射过程揭示所得孔隙压力 - 显性有效应力场的命运。然后将结果结合在有效应力场模型中。该模型可用于预测CO2注射到盐水含水层时储层岩石机械失效的可能性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号