首页> 外文期刊>Journal of chemical theory and computation: JCTC >Calculating and Characterizing the Charge Distributions in Solids
【24h】

Calculating and Characterizing the Charge Distributions in Solids

机译:计算和表征固体中的电荷分布

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate estimation of the partial atomic charges on metal centers is useful for understanding electronic and catalytic properties of materials. However, different methods of calculating these charges may give quite different results; this issue has been more widely studied for molecules than for solids. Here we study the charges on the metal centers of a test set of 18 solids containing transition metals by using density functional theory with several density functionals (PBE, PBE+U, TPSS, revTPSS, HLE17, revM06-L, B3LYP, B3LYP*, and other exchange-modified B3LYP functionals) and four charge models (Bader, Hirshfeld, CM5, and DDEC6). The test set contains 12 systems with nonmagnetic metal centers (eight metal oxides (MO2), two metal sulfides (MS2), and two metal selenides (MSe2)) and six ferromagnetic transition metal complexes. Our study shows that, among the four types of charges, Bader charges are the highest and Hirshfeld charges are the lowest for all the systems, regardless of the functional being used. The CM5 charges are bigger than DDEC6 charges for MX2 with M = Ti or Mo and X = S or Se, but for the other 14 cases they are lower. We found that the most of the systems are sensitive to the Hubbard U parameters in PBE+U and to the percentage X of Hartree-Fock exchange in exchange-modified B3LYP; as we increase U or X, the charges on the metal atoms in MX2 increase steadily. Testing different density functionals shows charges calculated with higher Hubbard U parameters in PBE+U are comparable to B3LYP (with 20% Hartree-Fock exchange). Among four meta-GGA functionals studied, the charges with HLE17 have the closest agreement with B3LYP. The variation of charges with choice of charge model is greater than the variation with choice of density functional.
机译:准确估计金属中心的部分原子电荷可用于理解材料的电子和催化性质。但是,计算这些费用的不同方法可能会产生相当不同的结果;该问题比固体更广泛地研究了分子。在这里,我们通过使用具有多个密度函数的密度泛函理论(PBE,PBE + U,TPS,REVTPS,HLE17,REVM06-L,B3LYP,B3LYP *,B3LYP,B3LYP *,B3LYP,B3LYP *,B3LYP,B3LYP *和其他交换修改的B3LYP功能)和四个电荷模型(獾,hirshfeld,cm5和ddec6)。测试组包含12个具有非磁性金属中心的系统(八金属氧化物(MO2),两个金属硫化物(MS2)和两个金属硒化酯(MSE2))和六个铁磁性过渡金属配合物。我们的研究表明,在四种类型的收费中,较糟糕的费用是最高的,并且所有系统的收费都是最低的,而不管使用的功能如何。 CM5电荷比MX2的DDEC6电荷大于MX2,MX2和Mo和x = S或SE,但对于它们较低的其他14个案例。我们发现,大多数系统对PBE + U中的Hubbard U参数敏感,并在Exchange修改的B3LYP中占Hartree-Fock交换的百分比x;随着我们增加U或X,MX2中金属原子上的电荷稳定地增加。测试不同的密度函数显示用PBE + U中使用较高的Hubbard U参数计算的费用与B3LYP(具有20%Hartree-Fock交换)。在研究的四个META-GGA功能中,HLE17的费用与B3LYP最接近。选择电荷模型的电荷变化大于密度函数选择的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号