首页> 外文期刊>Journal of chemical theory and computation: JCTC >Linked-Cluster Formulation of Electron-Hole Interaction Kernel in Real-Space Representation without Using Unoccupied States
【24h】

Linked-Cluster Formulation of Electron-Hole Interaction Kernel in Real-Space Representation without Using Unoccupied States

机译:在实际时光表示中的电子空穴交互内核的链接 - 集群配方而不使用未占用的状态

获取原文
获取原文并翻译 | 示例
           

摘要

Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination, and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and time-dependent density functional theory (TDDFT) formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as many-body perturbation theory formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems, and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
机译:电子 - 孔或Quasiplicle表示在描述许多电子系统中的电子激发中起着核心作用。对于电荷中性激发,电子 - 空穴相互作用核是计算重要激发特性的感兴趣的数量,例如光学间隙,光谱,电子 - 空穴重组和电子 - 空穴结合能。电子 - 空穴相互作用核可以使用绿色的函数和时间依赖的密度泛函理论(TDDFT)形式主义来正式地从密度密度相关函数中衍生。精确测定电子空穴相互作用核的精确挑战是GW + BSE形式中的光学性质精确计算的重大挑战。从TDDFT角度来看,电子孔交互内核被视为频率相关交换功能的系统发展的路径。传统方法,如许多身体扰动理论形式主义,使用未占用的状态(对费米真空定义)来构建电子孔相互作用核。然而,包含未占用的国家长期被认为是主要的计算瓶颈,限制了这种方法对较大的有限系统的应用。在这项工作中,提出了一种替代推导,避免使用未占用的状态构造电子孔交互内核。这种方法的核心思想是使用明确相关的宝石功能,用于处理地面和激发态波函数的电子 - 电子相关性。使用该ANSATZ,它使用两种示意性和代数技术导出,即电子空穴交互内核只能以链接的闭环图表表示。事实证明,取消解链图是实时表示中的链接集群定理的结果。在该工作中导出的电子孔相互作用核在许多电子系统中用于计算激发能力,并且发现结果与EOM-CCSD和GW + BSE方法良好。数值结果突出了开发方法的有效性克服了准确地确定电子空穴相互作用核的计算屏障,以大量有限系统(例如量子点和纳米棒)的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号