...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo
【24h】

Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo

机译:通过相关采样在辅助场蒙特卡罗的相关抽样接近化学准确性

获取原文
获取原文并翻译 | 示例
           

摘要

The exact and phaseless variants of auxiliary-field quantum Monte Carlo (AFQMC) have been shown to be capable of producing accurate ground-state energies for a wide variety of systems including those which exhibit substantial electron correlation effects. The computational cost of performing these calculations has to date been relatively high, impeding many important applications of these approaches. Here we present a correlated sampling methodology for AFQMC which relies on error cancellation to dramatically accelerate the calculation of energy differences of relevance to chemical transformations. In particular, we show that our correlated sampling-based AFQMC approach is capable of calculating redox properties, deprotonation free energies, and hydrogen abstraction energies in an efficient manner without sacrificing accuracy. We validate the computational protocol by calculating the ionization potentials and electron affinities of the atoms contained in the G2 test set and then proceed to utilize a composite method, which treats fixed-geometry processes with correlated sampling-based AFQMC and relaxation energies via MP2, to compute the ionization potential, deprotonation free energy, and the O-H bond disocciation energy of methanol, all to within chemical accuracy. We show that the efficiency of correlated sampling relative to uncorrelated calculations increases with system and basis set size and that correlated sampling greatly reduces the required number of random walkers to achieve a target statistical error. This translates to CPU-time speed-up factors of 55, 25, and 24 for the ionization potential of the K atom, the deprotonation of methanol, and hydrogen abstraction from the O-H bond of methanol, respectively. We conclude with a discussion of further efficiency improvements that may open the door to the accurate description of chemical processes in complex systems.
机译:已经证明能够为各种系统产生精确的地面能量,该精确和遮挡的型号的精确和释放变体能够为各种系统产生精确的地面能量,包括表现出显着的电子相关效果的系统。执行这些计算的计算成本迄今为止已经相对较高,阻碍了这些方法的许多重要应用。在这里,我们为AFQMC提供了一种相关的采样方法,它依赖于错误取消,从而大大加速与化学转化相关性的能量差异的计算。特别地,我们表明,我们的相关采样的AFQMC方法能够以有效的方式计算氧化还原性能,取代性自由能和氢抽取能量,而不会牺牲精度。我们通过计算G2测试集中包含的原子的电离电位和电子亲子来验证计算协议,然后进行以利用复合方法,该方法通过MP2处理基于采样的AFQMC和弛豫能量的相关采样的AFQMC和松弛能量。计算甲醇的离子化电位,去质子化能量和OH键消融能量,全部为化学精度。我们表明,相对于未环形的计算相关采样的效率随系统和基础集规而增加,并且相关采样大大减少了所需数量的随机步行者以实现目标统计误差。这转化为35,25和24的CPU - 时间加速因子,用于K原子的电离电位,甲醇的去质子和甲醇O-H键的氢摘除分别。我们结束了讨论了可以在复杂系统中可以对化学过程的准确描述开门的进一步效率改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号