首页> 外文期刊>Journal of chemical theory and computation: JCTC >Approximate versus Exact Embedding for Chiroptical Properties: Reconsidering Failures in Potential and Response
【24h】

Approximate versus Exact Embedding for Chiroptical Properties: Reconsidering Failures in Potential and Response

机译:对Chireoptical属性的近似与精确嵌入:重新考虑潜在和响应的故障

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the suitability of subsystem time-dependent density-functional theory (sTDDFT) for describing chiroptical properties with a focus on optical rotation parameters. Our starting point is a new implementation of the recently proposed projection-based, coupled frozen-density embedding (FDEc) framework. We adapt the generalized, non-Hermitian formulation of TDDFT and derive corresponding expressions for regular and damped response properties from subsystem TDDFT. We verify that our implementation of this "exact" formulation allows to reproduce supermolecular results of electronic circular dichroism (ECD) spectra, of optical rotatory dispersion, and of polarizabilities. We present a systematic test of the main approximations typically introduced in practical frozen-density embedding (FDE) calculations of response properties: (i) the use of approximate nonadditive kinetic-energy (NAKE) functionals, which can be avoided through projection techniques, (ii) the use of monomer (subsystem) basis sets rather than supersystem basis sets, and (iii) the neglect of intersubsystem response coupling within the so-called uncoupled FDE (or FDEu) approximation. While approximation (i) is known to generally lead to large errors for covalently bound subsystems, we present cases in which either the basis set or the coupling step are similarly or even (much) more important. In particular, we explicitly demonstrate by comparison to a fully coupled calculation that missing intersubsystem response couplings are responsible for the failure of FDE reported in a previous study [J. Chem. Theory Comput. 2015, 11, 5305-5315]. We show that good agreement with reference results can be obtained in this case even with standard NAKE approximations for the FDE potentials and efficient monomer basis sets, making calculations for larger systems well accessible.
机译:我们研究了子系统时间依赖性密度 - 功能理论(STDDFT)的适用性,用于描述具有焦点光学旋转参数的阴影性能。我们的起点是最近提出的基于投影的耦合冻结密度嵌入(FDEC)框架的新实施。我们根据子系统TDDFT调整TDDFT对TDDFT的广义,非私人制定的TDDFT和衍生相应的表达式,并从子系统TDDFT中获得相应的表达式。我们验证了我们的实现这一“精确”制剂的实施允许再现电子圆形二色(ECD)光谱的超分子结果,光学旋转分散和偏光性。我们提出了通常在实际冻结密度嵌入(FDE)计算中介绍的主要近似的系统测试,响应性能:(i)使用近似的非数型动能(Nake)功能,可以通过投影技术来避免,( ii)使用单体(子系统)基础集而不是超系统的基集,(iii)忽略所谓的未耦合FDE(或FDEU)近似内的偶像系统响应耦合。虽然已知近似(i)通常导致共价结合的子系统的大误差,但是我们存在基础设定或耦合步骤的情况类似地或甚至(多)更重要的情况。特别地,我们明确地证明了与缺少缺失的交叉系统响应耦合的完全耦合计算负责以前研究中报告的FDE的失败[J.化学。理论计算。 2015,11,5305-5315]。我们表明,即使具有FDE电位和有效的单体基础集的标准Nake近似,可以获得与参考结果的良好协议,即使FDE电位和有效的单体基础集,可以为较大的系统提供良好的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号