首页> 外文期刊>Journal of chemical theory and computation: JCTC >PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges
【24h】

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

机译:Physnet:用于预测能量,力,偶极矩和部分收费的神经网络

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow for accurately predicting the properties of chemical systems, circumventing the need for explicitly solving the electronic Schrodinger equation. Because of their computational efficiency and scalability to large data sets, deep neural networks (DNNs) are a particularly promising ML algorithm for chemical applications. This work introduces PhysNet, a DNN architecture designed for predicting energies, forces, and dipole moments of chemical systems. PhysNet achieves stateof-the-art performance on the QM9, MD17, and ISO17 benchmarks. Further, two new data sets are generated in order to probe the performance of ML models for describing chemical reactions, long-range interactions, and condensed phase systems. It is shown that explicitly including electrostatics in energy predictions is crucial for a qualitatively correct description of the asymptotic regions of a potential energy surface (PES). PhysNet models trained on a systematically constructed set of small peptide fragments (at most eight heavy atoms) are able to generalize to considerably larger proteins like deca-alanine (Ala(10)): The optimized geometry of helical Ala10 predicted by PhysNet is virtually identical to ab initio results (RMSD = 0.21 A). By running unbiased molecular dynamics (MD) simulations of Ala(10) on the PhysNet-PES in gas phase, it is found that instead of a helical structure, Ala(10) folds into a "wreath-shaped" configuration, which is more stable than the helical form by 0.46 kcal mol(-1) according to the reference ab initio calculations.
机译:近年来,机器学习(ML)方法在计算化学中越来越受欢迎。在接受适当的AB Initio参考数据上培训之后,这些方法允许精确地预测化学系统的性质,以规避需要明确解决电子Schrodinger方程的需求。由于它们对大数据集的计算效率和可扩展性,深度神经网络(DNN)是一种特别有前景的化学应用算法。这项工作推出了Physnet,这是一种用于预测化学系统的能量,力和偶极矩的DNN架构。 Physnet在QM9,MD17和ISO17基准上实现了最新的性能。此外,生成两个新数据集,以便探测ML模型的性能,用于描述化学反应,远程相互作用和冷凝相系统。结果表明,在明确地包括能量预测中的静电对于潜在能量表面(PE)的渐近区域的定性正确描述至关重要。在系统构造的一组小肽片段中培训的Physnet模型(最多八个重原子)能够概括为相当大的蛋白质,如Deca-丙氨酸(ALA(10)):Physnet预测的螺旋ALA10的优化几何形状几乎是相同的AB Initio结果(RMSD = 0.21a)。通过在气相中的Physnet-PE上运行ALA(10)的非偏见分子动力学(MD)模拟,发现代替螺旋结构,ALA(10)折叠成“花环形”配置,这是更多的根据参考AB Initio计算比螺旋形式稳定为0.46kcal摩尔(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号