首页> 外文期刊>Journal of chemical theory and computation: JCTC >Efficient Implementation of the Second-Order Quasidegenerate Perturbation Theory with Density-Fitting and Cholesky Decomposition Approximations: Is It Possible To Use Hartree-Fock Orbitals for a Multiconfigurational Perturbation Theory?
【24h】

Efficient Implementation of the Second-Order Quasidegenerate Perturbation Theory with Density-Fitting and Cholesky Decomposition Approximations: Is It Possible To Use Hartree-Fock Orbitals for a Multiconfigurational Perturbation Theory?

机译:有效地实现二阶拟合扰动理论,具有密度拟合和尖头分解近似:是否可以将Hartree-Fock轨道用于多轴扰动理论中?

获取原文
获取原文并翻译 | 示例
           

摘要

The high cost of common multireference second-order perturbation theory (MRPT2) methods compared with the single-reference variant (MP2) arises from the expensive complete active space self-consistent field (CASSCF) orbital optimization step. Furthermore, the use of conventional four-index electron repulsion integrals (ERIs) prevents their application to larger molecular systems due to expensive I/O procedures. To address these bottlenecks of the multiconfigurational second-order quasidegenerate perturbation theory (MC-QDPT2), an efficient implementation of QDPT2 with the density-fitting (DF) and Cholesky decomposition (CD) approximations, denoted by DF-QDPT2 and CD-QDPT2, is reported. For the DF/CD-QDPT2 methods, the Hose-Kaldor approach is used. The DF-QDPT2 method, with the cc-pwCVTZ basis set, dramatically reduces the computational cost compared to conventional multiconfigurational QDPT2 (MC-QDPT2, from the GAMESS 2017.R2 package), with a more than 122-fold reduction for the largest member of the diradical test set considered. The DF approximation enables substantially accelerated energies to be obtained for the QDPT2 approach due to the significantly reduced I/O time. The performance of the DF-QDPT2 and CD-QDPT2 methods is compared with that of CASSCF, the multireference second-order perturbation theory (MRMP2), MC-QDPT2, and CASSCF-based second-order perturbation theory (CASPT2) methods for singlet-triplet energy splitting (E-ST) in O-2 and C-2 molecules and for the dissociation energy of F-2. For the O-2 and C-2 molecules, the performance of the DF-QDPT2 and CD-QDPT2 methods is significantly better than that of CASSCF, MRMP2, MC-QDPT2, and CASPT2; while for the F-2 case, the results of DF-QDPT2, CD-QDPT2, MRMP2, MC-QDPT2, and CASPT2 are similar and remarkably better than that of CASSCF, which fails dramatically. Moreover, the DF-QDPT2, CASSCF, CASPT2, and MRCI+Q methods are applied to potential energy curves (PECs) for N-2, CH4, and F-2 molecules. Our results demonstrate that the performance of DF-QDPT2 is substantially better than that of CASSCF and is comparable with that of CASPT2 for the molecules considered. Overall, the present application results demonstrate that the DF-QDPT2 and CD-QDPT2 methods are very promising for electronically challenging molecular systems suffering from (quasi)degeneracy problems, where the single-reference methods cannot provide an accurate electronic description, but the DF-QDPT2 and CD-QDPT2 methods can do so at significantly reduced computational costs.
机译:与单引用变量(MP2)相比,常见的多引导二阶扰动理论(MRPT2)方法的高成本是从昂贵的完整活动空间自我一致性领域(CASSCF)轨道优化步骤。此外,使用常规的四指数电子排斥积分(ERIS)防止其应用于由于昂贵的I / O程序而较大的分子系统。为了解决多功能性二阶QuasideGenete扰动理论(MC-QDPT2)的这些瓶颈,有效地实现QDPT2的密度拟合(DF)和Cholesky分解(CD)近似,由DF-QDPT2和CD-QDPT2表示,据报道。对于DF / CD-QDPT2方法,使用软管kaldor方法。与CC-PWCVTZ基础集的DF-QDPT2方法显着降低了与传统的多组件QDPT2(来自Gamess 2017.R2封装)的计算成本相比,最大成员减少了122倍以下考虑的Diradical测试集。由于I / O时间显着降低,DF近似使得能够获得基本上加速的能量。 DF-QDPT2和CD-QDPT2方法的性能与CASSCF,多引导二阶扰动理论(MRMP2),MC-QDPT2和Casscf为基于烧录的二阶扰动理论(Caspt2)方法进行比较。 O-2和C-2分子中的三联能量分裂(E-ST)和F-2的解离能。对于O-2和C-2分子,DF-QDPT2和CD-QDPT2方法的性能明显优于CASSCF,MRMP2,MC-QDPT2和CASPT2;虽然对于F-2案例,DF-QDPT2,CD-QDPT2,MRMP2,MC-QDPT2和CASPT2的结果相似且比CASSCF的结果显着,这会显着地失败。此外,DF-QDPT2,CASSCF,CASPT2和MRCI + Q方法应用于N-2,CH4和F-2分子的潜在能量曲线(PEC)。我们的结果表明,DF-QDPT2的性能大大于CAS​​SCF的性能,并且与所考虑的分子的CASPT2相当。总体而言,本申请结果表明,DF-QDPT2和CD-QDPT2方法对于患有(准)退化问题的电子挑战性的分子系统非常有前途,其中单引用方法不能提供准确的电子描述,但是DF- QDPT2和CD-QDPT2方法可以显着降低计算成本。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号