首页> 外文期刊>Journal of chemical theory and computation: JCTC >Interactions of Water and Alkanes: Modifying Additive Force Fields to Account for Polarization Effects
【24h】

Interactions of Water and Alkanes: Modifying Additive Force Fields to Account for Polarization Effects

机译:水和烷烃的相互作用:改变添加力田间以解释极化效应

获取原文
获取原文并翻译 | 示例
           

摘要

Atomistic biomolecular simulations predominantly utilize additive force fields (FF), where the electrostatic potential is modeled by fixed point charges. Among other consequences, the lack of polarizability in these models undermines the balance of hydrophilic/hydrophobic nonbonded interactions. Simulations of water/alkane systems using the TIP3P water model and CHARMM36 parameters reveal a 1 kcal/mol overestimate of the experimental transfer free energy of water to hexadecane; more recent optimized water models (SPC/E, TIP4P/2005, TIP4P-Ew, TIP3P-FB, TIP4P-FB, OPC, TIP4P-D) overestimate this transfer free energy by approximately 2 kcal/mol. In contrast, the polarizable SWM4-NDP and SWM6 water models reproduce experimental values to within statistical error. As an alternative to explicitly modeling polarizability, this paper develops an efficient automated workflow to optimize pair-specific Lennard-Jones parameters within an additive FF. Water/hexadecane is used as a prototype and the free energy of water transfer to hexadecane as a target. The optimized model yields quantitative agreement with the experimental transfer free energy and improves the water/hexadecane interfacial tension by 6%. Simulations of five different lipid bilayers show a strong increase of water permeabilities compared to the unmodified CHARNIM36 lipid FF which consistently improves match with experiment: the order-of magnitude underestimate for monounsaturated bilayers is rectified and the factor of 2.8-4 underestimate for saturated bilayers is turned into a factor of 1.5-3 overestimate. While agreement with experiment is decreased for the diffusion constant of water in hexadecane, alkane transfer free energies, and the bilayers' area per lipid, the method provides a permeant-specific route to achieve a wide range of heterogeneous observables via rapidly optimized pairwise parameters.
机译:原子的生物分子模拟主要利用添加力场(FF),其中静电电位由固定点电荷进行建模。在其他后果之外,这些模型中缺乏极化性破坏了亲水/疏水非粘合相互作用的平衡。使用Tip3P水模型和CharmM36参数模拟水/烷烃系统,揭示了一种1千卡/摩尔的实验转移能量,水至十六烷基烷;最近的优化水模型(SPC / E,Tip4P / 2005,Tip4P-EW,Tip3P-FB,Tip4P-FB,OPC,Tip4P-D)将其估量其自由能量约为约2千卡/摩尔。相比之下,可极化的SWM4-NDP和SWM6水模型再现实验值在统计误差内。作为显式建模极化性的替代方案,本文开发了一个有效的自动化工作流程,以优化添加剂FF内的对特定的Lennard-Jones参数。水/十六烷用作原型和水转移的自由能量作为靶标。优化的模型与实验转移能量产生定量协议,并将水/十六烷膜界面张​​力提高6%。与未修改的Charnim36脂质FF相比,仿液化水渗透性的仿真表现出强烈的水渗透率增加,这一直改善与实验匹配的匹配:整理单不饱和双层低估的数量级,并且低估了饱和双层的2.8-4因子是变成了1.5-3的估计数。虽然与实验的一致性降低了十六烷烷,烷烃转移能量和双层面积的水的扩散常数,但该方法提供了渗透特定的途径,以通过快速优化的成对参数实现宽范围的异构可观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号