...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Cohesive Properties of Ionic Liquids Calculated from First Principles
【24h】

Cohesive Properties of Ionic Liquids Calculated from First Principles

机译:第一原理计算离子液体的粘性性质

获取原文
获取原文并翻译 | 示例
           

摘要

Low volatility of ionic liquids (ILs), being one of their most valuable properties, is also the principal factor making reliable measurements of vapor pressures and vaporization (or sublimation) enthalpies of ILs extremely difficult. Alternatively, vaporization enthalpies at the temperature of the triple point can be obtained from the enthalpies of sublimation and fusion. While the latter can be obtained calorimetrically with a fair accuracy, the former is in principle accessible through ab initio computations. This work assesses the performance of the first-principles calculations of sublimation properties of ILs. Namely, 3 compounds, coupling the 1-ethyl-3-methylimidazolium cation [emIm] with either tetrafluoroborate [BF4], hexafluorophosphate [PF6], or bis(trifluoromethylsulfonyl)imide [NTf2] anions were selected for a case study. A computational methodology, originally developed for molecular crystals, is adopted for crystals of ILs. It exploits periodic density functional theory (DFT) calculations of the unit-cell geometries and quasi-harmonic phonons and many-body expansion schemes for ab initio refinements of the lattice energies of crystalline ILs. The vapor phase is treated as the ideal gas whose properties are obtained combining the rigid rotor-harmonic oscillator model with corrections from the one-dimensional hindered rotors and molecular-dynamics simulations capturing the contributions from the interionic interaction modes. Although the given computational approach enables one to reach the chemical accuracy (4 kJ mol(-1)) of calculated sublimation enthalpies of simple molecular crystals, reaching the same level of accuracy for ionic liquids proves challenging as crystals of ionic liquids are bound appreciably stronger than common molecular crystals, the underlying cohesive energies of solid ionic liquids is up to 1 order of magnitude larger. Still, combination of the mentioned computational and experimental frameworks results in a novel promising scheme that is expected to generate reliable and accurate temperature-dependent data on sublimation (and vaporization) of ILs.
机译:离子液体(ILS)的低挥发性,是其最宝贵的性质之一,也是使ILS的蒸气压力和蒸发(或升华)焓的可靠测量的主要因素极为困难。或者,可以从升华和融合的焓获得三重点温度的汽化焓。虽然后者可以通过公平准确地获得热敏性地获得,但是前者原则上通过AB Initio计算来访问。这项工作评估了ILS升华性质的第一原理计算的性能。即3种化合物,用四氟硼酸盐[BF4],六氟磷酸盐[PF6]或双(三氟甲基磺酰基)酰亚胺[NTF2]阴离子偶联1-乙基-3-甲基咪唑鎓阳离子[emim]的化合物进行案例研究。采用ILS晶体采用最初为分子晶体开发的计算方法。它利用了单细胞几何形状和准谐波声子的周期性函数理论(DFT)计算,以及用于结晶ILS的晶格能量的AB Initio改进的许多身体扩展方案。将气相处理为理想的气体,其具有与捕获来自相互作用模式的贡献的一维阻碍转子和分子动力学模拟的校正的刚性转子谐波振荡器模型的理想气体。虽然给定的计算方法使得一个能够达到简单分子晶体的计算升华焓的化学精度(4kJMol(-1)),但是对于离子液体的达到相同的精度,证明是因为离子液体的晶体结合明显更强比普通的分子晶体,固体离子液体的底层内聚能量高达1个级别。仍然,提到的计算和实验框架的组合导致新颖的有前途的方案,这些方案预计将产生对ILS的升华(和汽化)的可靠和准确的温度依赖性数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号