...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Coarse-Grained Simulations of Peptide Nanoparticle Formation: Role of Local Structure and Nonbonded Interactions
【24h】

Coarse-Grained Simulations of Peptide Nanoparticle Formation: Role of Local Structure and Nonbonded Interactions

机译:肽纳米粒子形成的粗粒模拟:局部结构的作用和非粘合的相互作用

获取原文
获取原文并翻译 | 示例

摘要

Biocompatible nanostructures play an important role in drug delivery and tissue engineering applications. Controlled growth of peptide-based nanoparticles with specific morphology needs an understanding of the role of the sequence and solvation properties. In a previous combined experimental-computational study, we identified factors that govern the formation of well-defined aggregates by self-assembled pentapeptides using single amino acid substitution (Mishra, N. K.; Jain, A.; Peter, C.; Verma, S. J. Phys. Chem. B 2017, 121, 8155-8161). The atomistic simulation study suggested a subtle interplay between various peptide properties like rigidity/flexibility, hydrogen bonding, partitioning of aromatic residues, and dimerization of peptides that determine the different morphologies, while the overall aggregation propensity was mostly determined by the composition of the methanol/water solvent mixture. The size of the simulated aggregates and the time scales were rather restricted due to the atomistic character of the study. Here, we present an extension to a coarse-grained representation that allows for much larger system sizes and longer time scales. To this end, we have optimized a MARTINI model so that it can deal with a system that relies on local structure formation. We combine information on local behavior from atomistic studies and apply supportive dihedral angles together with local adjustment of the bead types to find the right interplay of solvent and peptides. Finally, to mimic the dimers, an introduction of additional bonds between the monomers was necessary. By adding the modifications stepwise, we were able to disentangle the influences of the various contributions, like the rigidity/flexibility of the peptides, dimer formation, or nonbonded properties of the beads, on the overall aggregation propensity and morphology of the nanoparticles. The obtained models resemble the experimental and atomistic behavior and are able to provide mechanistic insight into peptide nanoparticle formation.
机译:生物相容性纳米结构在药物递送和组织工程应用中起重要作用。基于肽的纳米颗粒具有特异性形态的受控生长需要了解序列和溶剂化性能的作用。在先前的组合实验计算研究中,我们通过单氨基酸替代(Mishra,NK,A.peter,C.彼得,C.彼得,C.; Peter,C.; Peter,C.;彼得,C.;彼得,C.;彼得,C.;彼得,C.;彼得,C.; Verma,SJ Phys 。化学。B 2017,121,8155-8161)。原子仿真研究表明,各种肽特性,如刚性/柔韧性,氢键,芳族残基的分配,以及确定不同形态的肽的二聚化,而总体聚集倾向主要由甲醇/水溶剂混合物。由于研究的原子特征,模拟聚集体和时间尺度的大小相当受到限制。这里,我们向粗粒度表示的扩展呈现给允许更大的系统尺寸和更长的时间尺度。为此,我们已经优化了Martini模型,以便它可以处理依赖于局部结构形成的系统。我们将关于局部行为的信息与原子学研究相结合,并将支撑二面角与局部调整一起应用,以找到溶剂和肽的正确相互作用。最后,为了模拟二聚体,需要引入单体之间的额外键。通过逐步添加修饰,我们能够解开各种贡献的影响,如肽,二聚体形成或珠子的非粘合性的刚性/柔韧性,对纳米颗粒的总体聚集倾倾和形态。所获得的模型类似于实验和原子的行为,能够为肽纳米粒子形成提供机械洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号