...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries
【24h】

Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries

机译:化学准确的0-0能量,不太精确的激励状态几何形状

获取原文
获取原文并翻译 | 示例
           

摘要

Using a series of increasingly refined wave function methods able to tackle electronic excited states, namely ADC(2), CC2, CCSD, CCSDR(3), and CC3, we investigate the interplay between geometries and 0-0 energies. We show that, due to a strong and nearly systematic error cancelation between the vertical transition and geometrical reorganization energies, CC2 and CCSD structures can be used to obtain chemically accurate 0-0 energies, though the underlying geometries are rather far from the reference ones and would deliver significant errors for several chemical and physical properties. This indicates that obtaining 0-0 energies matching experiment does not demonstrate the quality of the underlying geometrical parameters. By computing CC3 total energies on CCSD structures, we model a large set of compounds (including radicals) and electronic transitions (including singlet-triplet excitations) and successfully reach chemical accuracy in a near systematic way. Indeed, for this particular set, we obtain a mean absolute error as small as 0.032 eV, chemical accuracy (error smaller than 1 kcal.mol(-1) or 0.043 eV) being obtained in 80% of the cases. In only three cases out of more than 100 examples, the error exceeds 0.15 eV which is of the order of the typical error provided by TD-DFT or second-order wave function methods for 0-0 energies. The present composite approach seems therefore effective, at least for low-lying states, despite the fact that the geometries may not be considered as very accurate.
机译:使用能够解决电子激发状态的一系列越来越精细的波函数方法,即ADC(2),CC2,CCSD,CCSDR(3)和CC3,我们调查几何和0-0能量之间的相互作用。我们表明,由于垂直转换和几何重组能量之间的强大和几乎系统的误差取消,CC2和CCSD结构可用于获得化学准确的0-0能量,尽管底层几何形状与参考和将为几种化学物理性质提供重大错误。这表明获得0-0能量匹配实验不会证明底层几何参数的质量。通过计算CCSD结构的CC3总能量,我们模拟了大量的化合物(包括基团)和电子转换(包括单级三重激发),并以近系统的方式成功地达到化学精度。实际上,对于这种特定的组,我们获得了一个平均绝对误差,小于0.032 eV,化学精度(小于1 kcal的误差)在80%的情况下获得。在超过100个示例中只有三个案例中,误差超过0.15 EV,这是由TD-DFT或二阶波函数方法提供的典型误差为0-0能量的顺序。因此,目前的复合方法似乎有效,至少对于低洼状态,尽管几何形状可能不被视为非常准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号